【題目】如圖,已知四棱錐,底面是邊長(zhǎng)為的菱形,,側(cè)面為正三角形,側(cè)面底面,為側(cè)棱的中點(diǎn),為線段的中點(diǎn)
(Ⅰ)求證:平面;
(Ⅱ)求證:;
(Ⅲ)求三棱錐的體積
【答案】(Ⅰ)見(jiàn)解析(Ⅱ)見(jiàn)解析(Ⅲ)
【解析】
(Ⅰ)連接,交于點(diǎn);根據(jù)三角形中位線可證得;由線面平行判定定理可證得結(jié)論;(Ⅱ)由等腰三角形三線合一可知;由面面垂直的性質(zhì)可知平面;根據(jù)線面垂直性質(zhì)可證得結(jié)論;(Ⅲ)利用體積橋的方式將所求三棱錐體積轉(zhuǎn)化為;根據(jù)已知長(zhǎng)度和角度關(guān)系分別求得四邊形面積和高,代入得到結(jié)果.
(Ⅰ)證明:連接,交于點(diǎn)
四邊形為菱形 為中點(diǎn)
又為中點(diǎn)
平面,平面 平面
(Ⅱ)為正三角形,為中點(diǎn)
平面平面,平面平面,平面
平面,又平面
(Ⅲ)為中點(diǎn)
又,
,
由(Ⅱ)知,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 命題“,”,則是真命題
B. “”是“”的必要不充分條件
C. 命題“,”的否定是:“,”
D. “”是“在上為增函數(shù)”的充要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解創(chuàng)建文明城市過(guò)程中學(xué)生對(duì)創(chuàng)建工作的滿意情況,相關(guān)部門(mén)對(duì)某中學(xué)的100名學(xué)生進(jìn)行調(diào)查.得到如下的統(tǒng)計(jì)表:
滿意 | 不滿意 | 合計(jì) | |
男生 | 50 | ||
女生 | 15 | ||
合計(jì) | 100 |
已知在全部100名學(xué)生中隨機(jī)抽取1人對(duì)創(chuàng)建工作滿意的概率為.
(1)在上表中相應(yīng)的數(shù)據(jù)依次為;
(2)是否有充足的證據(jù)說(shuō)明學(xué)生對(duì)創(chuàng)建工作的滿意情況與性別有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;
(2)將函數(shù)的圖象向右平移個(gè)單位后,再將所得圖象的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到的函數(shù)的圖象關(guān)于軸對(duì)稱(chēng),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=sin(ωx+φ)的導(dǎo)函數(shù)y=f′(x)的部分圖象如圖所示,其中,P為圖象與y軸的交點(diǎn),A,C為圖象與x軸的兩個(gè)交點(diǎn),B為圖象的最低點(diǎn).
(1)若φ= ,點(diǎn)P的坐標(biāo)為(0, ),則ω=;
(2)若在曲線段 與x軸所圍成的區(qū)域內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)在△ABC內(nèi)的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓與軸交于兩點(diǎn),且(為圓心),過(guò)點(diǎn)且斜率為的直線與圓相交于兩點(diǎn)
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)若,求的取值范圍;
(Ⅲ)若向量與向量共線(為坐標(biāo)原點(diǎn)),求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在上是增函數(shù),則的取值范圍是( 。
A. B. C. D.
【答案】C
【解析】
若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)>0,根據(jù)二次函數(shù)的單調(diào)性,我們可得到關(guān)于a的不等式,解不等式即可得到a的取值范圍.
若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),
則當(dāng)x∈[2,+∞)時(shí),
x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)
即,f(2)=4+a>0
解得﹣4<a≤4
故選:C.
【點(diǎn)睛】
本題考查的知識(shí)點(diǎn)是復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對(duì)數(shù)函數(shù)的單調(diào)區(qū)間,其中根據(jù)復(fù)合函數(shù)的單調(diào)性,構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.
【題型】單選題
【結(jié)束】
10
【題目】圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=,x∈(-2,2).
(1) 判斷f(x)的奇偶性并說(shuō)明理由;
(2) 求證:函數(shù)f(x)在(-2,2)上是增函數(shù);
(3) 若f(2+a)+f(1-2a)>0,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),F(xiàn)為左焦點(diǎn),原點(diǎn)O到直線FA的距離為 b.
(1)求橢圓C的離心率;
(2)設(shè)b=2,直線y=kx+4與橢圓C交于不同的兩點(diǎn)M,N,求證:直線BM與直線AN的交點(diǎn)G在定直線上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com