設(shè)P1(x1,y1),P1(x2,y2),…,Pn(xn,yn)(n≥3,n∈N) 是二次曲線C上的點(diǎn),且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2構(gòu)成了一個(gè)公差為d(d≠0) 的等差數(shù)列,其中O是坐標(biāo)原點(diǎn).記Sn=a1+a2+…+an
(1)若C的方程為數(shù)學(xué)公式-y2=1,n=3.點(diǎn)P1(3,0) 及S3=162,求點(diǎn)P3的坐標(biāo);(只需寫出一個(gè))
(2)若C的方程為y2=2px(p≠0).點(diǎn)P1(0,0),對(duì)于給定的自然數(shù)n,證明:(x1+p)2,(x2+p)2,…,(xn+p)2成等差數(shù)列;
(3)若C的方程為數(shù)學(xué)公式(a>b>0).點(diǎn)P1(a,0),對(duì)于給定的自然數(shù)n,當(dāng)公差d變化時(shí),求Sn的最小值.
符號(hào)意義本試卷所用符號(hào)等同于《實(shí)驗(yàn)教材》符號(hào)
向量坐標(biāo)數(shù)學(xué)公式={x,y}數(shù)學(xué)公式=(x,y)
正切tgtan

解:(1)a1=|OP1|2=9,由S3=(a1+a3)=162,得a3=|OP3|3=99.

∴點(diǎn)P3的坐標(biāo)可以為(3,3).
(2)對(duì)每個(gè)自然數(shù)k,1≤k≤n,由題意|OPk|2=(k-1)d,

即(xk+p)2=p2+(k-1)d,
∴(x1+p)2,(x2+p)2,…(xn+p)2是首項(xiàng)為p2,公差為d的等差數(shù)列.
(3)原點(diǎn)O到二次曲線
C:(a>b>0)上各點(diǎn)的最小距離為b,最大距離為a.
∵a1=|OP1|2=a2,∴d<0,且an=|OPn|2=a2+(n-1)d≥b2,
≤d<0.∵n≥3,>0
∴Sn=na2+d在[,0)上遞增,
故Sn的最小值為na2+=
分析:(1)利用條件求出a3的值.再聯(lián)立二次曲線求出點(diǎn)P3的坐標(biāo)即可.
(2)先利用定義求出|OPk|2,再聯(lián)立二次曲線求出(xk+p)2表達(dá)式,就可下結(jié)論.
(3)先求出原點(diǎn)O到二次曲線上各點(diǎn)的最小距離和最大距離;再利用定義求出an的通項(xiàng)以及Sn的表達(dá)式,利用公差d的范圍,求出Sn的最小值即可.
點(diǎn)評(píng):本題是對(duì)數(shù)列和函數(shù)以及二次曲線的綜合考查.其中涉及到了等差數(shù)列的證明,數(shù)列的求和等知識(shí)點(diǎn),是一道不太容易的題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f是直角坐標(biāo)平面xOy到自身的一個(gè)映射,點(diǎn)P在映射f下的象為點(diǎn)Q,記作Q=f(P).設(shè)P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),….如果存在一個(gè)圓,使所有的點(diǎn)Pn(xn,yn)(n∈N*)都在這個(gè)圓內(nèi)或圓上,那么稱這個(gè)圓為點(diǎn)Pn(xn,yn)的一個(gè)收斂圓.特別地,當(dāng)P1=f(P1)時(shí),則稱點(diǎn)P1為映射f下的不動(dòng)點(diǎn).若點(diǎn)P(x,y)在映射f下的象為點(diǎn)Q(-x+1,
12
y)

(Ⅰ)求映射f下不動(dòng)點(diǎn)的坐標(biāo);
(Ⅱ)若P1的坐標(biāo)為(2,2),求證:點(diǎn)Pn(xn,yn)(n∈N*)存在一個(gè)半徑為2的收斂圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P1(x1,y1),P1(x2,y2),…,Pn(xn,yn)(n≥3,n∈N)是二次曲線C上的點(diǎn),且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2構(gòu)成了一個(gè)公差為d(d≠0)的等差數(shù)列,其中O是坐標(biāo)原點(diǎn).記Sn=a1+a2+…+an
(1)若C的方程為
x2
100
+
y2
25
=1,n=3.點(diǎn)P1(10,0)及S3=255,求點(diǎn)P3的坐標(biāo);(只需寫出一個(gè))
(2)若C的方程為
x2
a2
+
y2
b2
=1
(a>b>0).點(diǎn)P1(a,0),對(duì)于給定的自然數(shù)n,當(dāng)公差d變化時(shí),求Sn的最小值;
(3)請(qǐng)選定一條除橢圓外的二次曲線C及C上的一點(diǎn)P1,對(duì)于給定的自然數(shù)n,寫出符合條件的點(diǎn)P1,P2,…Pn存在的充要條件,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P1(x1,y1)、P2(x2,y2)是函數(shù)f(x)=
2x
2x+
2
圖象上的兩點(diǎn),且
OP
=
1
2
(
OP1
+
OP2
)
,點(diǎn)P的橫坐標(biāo)為
1
2

(1)求證:P點(diǎn)的縱坐標(biāo)為定值,并求出這個(gè)定值;
(2)若Sn=
n
i=1
f(
i
n
),n∈N*
,求Sn;
(3)記Tn為數(shù)列{
1
(Sn+
2
)(Sn+1+
2
)
}
的前n項(xiàng)和,若Tn<a(Sn+1+
2
)
對(duì)一切n∈N*都成立,試求a的取值范圍.
an-1+1=
an
n

(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)…(1+
1
an
)≤3-
1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P1(x1,y1),P1(x2,y2),…,Pn(xn,yn)(n≥3,n∈N) 是二次曲線C上的點(diǎn),且a1=|OP1|2,a2=|OP2|2,…,an=|OPn|2構(gòu)成了一個(gè)公差為d(d≠0) 的等差數(shù)列,其中O是坐標(biāo)原點(diǎn).記Sn=a1+a2+…+an
(1)若C的方程為
x2
9
-y2=1,n=3.點(diǎn)P1(3,0) 及S3=162,求點(diǎn)P3的坐標(biāo);(只需寫出一個(gè))
(2)若C的方程為y2=2px(p≠0).點(diǎn)P1(0,0),對(duì)于給定的自然數(shù)n,證明:(x1+p)2,(x2+p)2,…,(xn+p)2成等差數(shù)列;
(3)若C的方程為
x2
a2
+
y2
b2
=1
(a>b>0).點(diǎn)P1(a,0),對(duì)于給定的自然數(shù)n,當(dāng)公差d變化時(shí),求Sn的最小值.
符號(hào)意義 本試卷所用符號(hào) 等同于《實(shí)驗(yàn)教材》符號(hào)
向量坐標(biāo)
a
={x,y}
a
=(x,y)
正切 tg tan

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a•2x
2x+
2
的圖象過(guò)點(diǎn)(0,
2
-1)

(1)求f(x)的解析式;
(2)設(shè)P1(x1,y1),P2(x2,y2)為y=f(x)的圖象上兩個(gè)不同點(diǎn),又點(diǎn)P(xP,yP)滿足:
OP
=
1
2
(
OP1
+
OP2
)
,其中O為坐標(biāo)原點(diǎn).試問(wèn):當(dāng)xP=
1
2
時(shí),yP是否為定值?若是,求出yP的值,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案