1 | 2 |
|
|
1 |
2 |
1 |
2 |
1 |
2 |
|
1 |
2 |
1 |
2 |
|
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
xn+1-
| ||
xn-
|
yn+1 |
yn |
1 |
2 |
1 |
2 |
1 |
2 |
3 |
2 |
1 |
2 |
3 |
2 |
1 |
2 |
3 |
2 |
1 |
2 |
1 |
2 |
3 |
2 |
1 |
2 |
1 |
2 |
(
|
1 |
2 |
1 |
2 |
(
|
1 |
2 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x+y |
2 |
x-y |
2 |
5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年西城區(qū)抽樣文)(14分)
已知f是直角坐標(biāo)平面xOy到自身的一個映射,點在映射f下的象為點,記作.
設(shè),,. 如果存在一個圓,使所有的點都在這個圓內(nèi)或圓上,那么稱這個圓為點的一個收斂圓. 特別地,當(dāng)時,則稱點為映射f下的不動點.
若點在映射f下的象為點.
(Ⅰ) 求映射f下不動點的坐標(biāo);
(Ⅱ) 若的坐標(biāo)為(2,2),求證:點存在一個半徑為2的收斂圓.查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年西城區(qū)抽樣理)(14分)
已知f是直角坐標(biāo)平面xOy到自身的一個映射,點在映射f下的象為點,記作.
設(shè),,. 如果存在一個圓,使所有的點都在這個圓內(nèi)或圓上,那么稱這個圓為點的一個收斂圓. 特別地,當(dāng)時,則稱點為映射f下的不動點.
(Ⅰ) 若點在映射f下的象為點.
1 求映射f下不動點的坐標(biāo);
2 若的坐標(biāo)為(1,2),判斷點是否存在一個半徑為3的收斂圓,并說明理由.
(Ⅱ) 若點在映射f下的象為點,(2,3). 求證:點存在一個半徑為的收斂圓.查看答案和解析>>
科目:高中數(shù)學(xué) 來源:北京模擬題 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com