橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,a+b=3.
(1)求橢圓C的方程;
(2)如圖,A,B,D是橢圓C的頂點,P是橢圓C上除頂點外的任意點,直線DP交x軸于點N直線AD交BP于點M,設(shè)BP的斜率為k,MN的斜率為m,證明2m-k為定值.
(1)因為e=
c
a
=
3
2
,所以
c2
a2
=
a2-b2
a2
=
3
4
,即a2=4b2,a=2b.
又a+b=3,得a=2,b=1.
所以橢圓C的方程為
x2
4
+y2=1

(2)證明:因為B(2,0),P不為橢圓頂點,則可設(shè)直線BP的方程為y=k(x-2)(k≠0,k≠±
1
2
)

聯(lián)立
y=k(x-2)
x2
4
+y2=1
,得(4k2+1)x2-16k2x+16k2-4=0.
所以xP+2=
16k2
4k2+1
,xP=
8k2-2
4k2+1

yP=k(
8k2-2
4k2+1
-2)=
-4k
4k2+1

所以P(
8k2-2
4k2+1
-4k
4k2+1
).
又直線AD的方程為y=
1
2
x+1

聯(lián)立
y=k(x-2)
y=
1
2
x+1
,解得M(
4k+2
2k-1
,
4k
2k-1
).
由三點D(0,1),P(
8k2-2
4k2+1
-4k
4k2+1
),N(x,0)共線,
-4k
4k2+1
-1
8k2-2
4k2+1
-0
=
0-1
x-0
,所以N(
4k-2
2k+1
,0
).
所以MN的斜率為m=
4k
2k-1
-0
4k+2
2k-1
-
4k-2
2k+1
=
4k(2k+1)
2(2k+1)2-2(2k-1)2
=
2k+1
4

2m-k=
2k+1
2
-k=
1
2

所以2m-k為定值
1
2
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C的頂點為O(0,0),焦點F(0,1)
(Ⅰ)求拋物線C的方程;
(Ⅱ)過F作直線交拋物線于A、B兩點.若直線OA、OB分別交直線l:y=x-2于M、N兩點,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率e=
5
5
,過F1的直線交橢圓于M、N兩點,且△MNF2周長為4
5

(Ⅰ)求橢圓E的方程;
(Ⅱ)已知過橢圓中心,且斜率為k(k≠0)的直線與橢圓交于A、B兩點,P是線段AB的垂直平分線與橢圓E的一個交點,若△APB的面積為
40
9
,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過點P(1,1)作直線與雙曲線x2-
y2
2
=1
交于A、B兩點,使點P為AB中點,則這樣的直線(  )
A.存在一條,且方程為2x-y-1=0
B.存在無數(shù)條
C.存在兩條,方程為2x±(y+1)=0
D.不存在

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C1
x2
a2
+
y2
b2
=1
(a>b>0)與直線x+y-1=0相交于A、B兩點.
(1)若橢圓的半焦距c=
3
,直線x=±a與y=±b圍成的矩形ABCD的面積為8,求橢圓的方程;
(2)若O(
OA
OB
=0
為坐標原點),求證:
1
a2
+
1
b2
=2
;
(3)在(2)的條件下,若橢圓的離心率e滿足
3
3
≤e≤
2
2
,求橢圓長軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C:y2=2px(p>0)上橫坐標為1的點M到拋物線C焦點F的距離|MF|=2.
(1)試求拋物線C的標準方程;
(2)若直線l與拋物線C相交所得的弦的中點為(2,1),試求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C1:y2=8x與雙曲線C2
x2
a2
-
y2
b2
=1
(a>0,b>0)有公共焦點F2,點A是曲線C1,C2在第一象限的交點,且|AF2|=5.
(1)求雙曲線C2的方程;
(2)以雙曲線C2的另一焦點F1為圓心的圓M與直線y=
3
x
相切,圓N:(x-2)2+y2=1.過點P(1,
3
)作互相垂直且分別與圓M、圓N相交的直線l1和l2,設(shè)l1被圓M截得的弦長為s,l2被圓N截得的弦長為t,問:
s
t
是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線C:x2-
y2
2
=1
,過點P(-1,-2)的直線交C于A,B兩點,且點P為線段AB的中點.
(1)求直線AB的方程;
(2)求弦長|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(1,
q
2
)
,且離心率e=
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點M、N,且線段MN的垂直平分線過定點G(
1
8
,0)
,求k的取值范圍.

查看答案和解析>>

同步練習冊答案