已知拋物線C的頂點(diǎn)為O(0,0),焦點(diǎn)F(0,1)
(Ⅰ)求拋物線C的方程;
(Ⅱ)過(guò)F作直線交拋物線于A、B兩點(diǎn).若直線OA、OB分別交直線l:y=x-2于M、N兩點(diǎn),求|MN|的最小值.
(I)由題意可設(shè)拋物線C的方程為x2=2py(p>0)則
p
2
=1,解得p=2,故拋物線C的方程為x2=4y
(II)設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=kx+1
y=kx+1
x2=4y
消去y,整理得x2-4kx-4=0
所以x1+x2=4k,x1x2=-4,從而有|x1-x2|=
(x1+x2)2-4x1x2
=4
k2+1

y=
y1
x1
x
y=x-2
解得點(diǎn)M的橫坐標(biāo)為xM=
2x1
x1-y1
=
2x1
x1-
x12
4
=
8
4-x1
,
同理可得點(diǎn)N的橫坐標(biāo)為xN=
8
4-x2

所以|MN|=
2
|xM-xN|=
2
|
8
4-x1
-
8
4-x2
|=8
2
|
x1-x2
x1x2-4(x1+x2)+16
|=
8
2
k2+1
|4k-3|

令4k-3=t,t不為0,則k=
t+3
4

當(dāng)t>0時(shí),|MN|=2
2
25
t2
+
6
t
+1
>2
2

當(dāng)t<0時(shí),|MN|=2
2
25
t2
+
6
t
+1
=2
2
(
5
t
+
3
5
)2+
16
25
8
2
5

綜上所述,當(dāng)t=-
25
3
時(shí),|MN|的最小值是
8
2
5
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知F是拋物線y2=4x上的焦點(diǎn),P是拋物線上的一個(gè)動(dòng)點(diǎn),若動(dòng)點(diǎn)M滿足
FP
=2
FM
,則M的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

直線l:y=kx+1與雙曲線C:3x2-y2=1相交于不同的A,B兩點(diǎn).
(1)求AB的長(zhǎng)度;
(2)是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)?若存在,求出k的值,若不存在,寫(xiě)出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線C:x2=2py(p>0)的焦點(diǎn)為F,O為坐標(biāo)原點(diǎn);當(dāng)拋物線上點(diǎn)N的縱坐標(biāo)為1時(shí),|NF|=2,已知直線l經(jīng)過(guò)拋物線C的焦點(diǎn)F,且與拋物線C交于A,B兩點(diǎn)
(1)求拋物線C的方程;
(2)若△AOB的面積為4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)P(x0,y0)是橢圓C:
x2
5
+y2=1
上的一點(diǎn).F1、F2是橢圓C的左右焦點(diǎn).
(1)若∠F1PF2是鈍角,求點(diǎn)P橫坐標(biāo)x0的取值范圍;
(2)求代數(shù)式
y20
+2x0
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)
的離心率e=
3
2
,短軸長(zhǎng)為2,點(diǎn)A(x1,y1),B(x2,y2)是橢圓上的兩點(diǎn),
m
=(
x1
b
,
y1
a
)
,
n
=(
x2
b
y2
a
)
,且
m
n
=0

(1)求橢圓方程;
(2)若直線AB過(guò)橢圓的焦點(diǎn)F(0,c)(c為半焦距),求直線AB的斜率;
(3)試問(wèn):△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知△ABC中,B(-2,0),C(2,0),△ABC的周長(zhǎng)為12,動(dòng)點(diǎn)A的軌跡為曲線E.
(1)求曲線E的方程;
(2)設(shè)P、Q為E上兩點(diǎn),
OP
OQ
=0
,過(guò)原點(diǎn)O作直線PQ的垂線,垂足為M,證明|OM|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ADBC,DA⊥AB,AD=3,AB=4,BC=
3
,點(diǎn)E在線段AB的延長(zhǎng)線上.若曲線段DE(含兩端點(diǎn))為某曲線L上的一部分,且曲線L上任一點(diǎn)到A、B兩點(diǎn)的距離之和都相等.
(1)建立恰當(dāng)?shù)闹苯亲鴺?biāo)系,求曲線L的方程;
(2)根據(jù)曲線L的方程寫(xiě)出曲線段DE(含兩端點(diǎn))的方程;
(3)若點(diǎn)M為曲線段DE(含兩端點(diǎn))上的任一點(diǎn),試求|MC|+|MA|的最小值,并求出取得最小值時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,a+b=3.
(1)求橢圓C的方程;
(2)如圖,A,B,D是橢圓C的頂點(diǎn),P是橢圓C上除頂點(diǎn)外的任意點(diǎn),直線DP交x軸于點(diǎn)N直線AD交BP于點(diǎn)M,設(shè)BP的斜率為k,MN的斜率為m,證明2m-k為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案