【題目】已知函數(shù)y=f(x)的導(dǎo)函數(shù)y=f'(x)的圖像如圖所示.

則下列說(shuō)法中正確的是____(填序號(hào)).

函數(shù)y=f(x)在區(qū)間上單調(diào)遞增;

函數(shù)y=f(x)在區(qū)間上單調(diào)遞減;

函數(shù)y=f(x)在區(qū)間(4,5)上單調(diào)遞增;

當(dāng)x=2時(shí),函數(shù)y=f(x)有極小值;

當(dāng)x=-時(shí),函數(shù)y=f(x)有極大值.

【答案】

【解析】

利用使的區(qū)間是增區(qū)間,使的區(qū)間是減區(qū)間,分別對(duì)①②③進(jìn)行逐一判定,導(dǎo)數(shù)等于零的值是極值,先增后減是極大值,先減后增是極小值,再對(duì)④⑤進(jìn)行判定.

①函數(shù)在區(qū)間內(nèi)有增有減,故不正確;

②函數(shù)在區(qū)間內(nèi)有增有減,故不正確;

③函數(shù)當(dāng)時(shí),恒有故正確;

④當(dāng)時(shí),函數(shù)有極大值,故不正確;

⑤當(dāng)時(shí),,故不正確;

故答案為③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司的生產(chǎn)部門(mén)調(diào)研發(fā)現(xiàn),該公司第二、三季度的月用電量與月份線性相關(guān),且數(shù)據(jù)統(tǒng)計(jì)如下表:

但核對(duì)電費(fèi)報(bào)表時(shí)發(fā)現(xiàn)一組數(shù)據(jù)統(tǒng)計(jì)有誤.

(1)請(qǐng)指出哪組數(shù)據(jù)有誤,并說(shuō)明理由;

(2)在排除有誤數(shù)據(jù)后,求月用電量與月份之間的回歸方程,并預(yù)測(cè)統(tǒng)計(jì)有誤月份的用電量.(結(jié)果精確到0.1)

附注:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,雙曲線 =1(a,b>0)的兩頂點(diǎn)為A1 , A2 , 虛軸兩端點(diǎn)為B1 , B2 , 兩焦點(diǎn)為F1 , F2 . 若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2 , 切點(diǎn)分別為A,B,C,D.則: (Ⅰ)雙曲線的離心率e=;
(Ⅱ)菱形F1B1F2B2的面積S1與矩形ABCD的面積S2的比值 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA平面ABC,AB⊥AC,PA=AC=3,AB=,BE=EC,AD=2DC.

(1)證明:DE⊥平面PAE;

(2)求二面角A-PE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知CD是等邊三角形ABC的AB邊上的高,E,F分別是AC和BC邊的中點(diǎn),現(xiàn)將ABC沿CD翻折成直二面角A-DC-B.

(1)求直線BC與平面DEF所成角的余弦值;

(2)在線段BC上是否存在一點(diǎn)P,使APDE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在上的奇函數(shù)滿足,且在區(qū)間上是增函數(shù).,若方程在區(qū)間上有四個(gè)不同的根,則

A. -8 B. -4 C. 8 D. -16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)幾何體三視圖的正視圖和側(cè)視圖為邊長(zhǎng)為2銳角60°的菱形,俯視圖為正方形,則此幾何體的內(nèi)切球表面積為(

A.8π
B.4π
C.3π
D.2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,若AB邊上的高為 ,且a2+b2=2 ab,則C=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線C的一個(gè)焦點(diǎn)與拋物線C1:y2=-16x的焦點(diǎn)重合,且其離心率為2.

(1)求雙曲線C的方程;

(2)求雙曲線C的漸近線與拋物線C1的準(zhǔn)線所圍成三角形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案