【題目】如圖所示,在直三棱柱中,,,,,點(diǎn)在線段上.
(1)若,求異面直線和所成角的余弦值;
(2)若直線與平面所成角為,試確定點(diǎn)的位置.
【答案】(1)(2)點(diǎn)M是線段的中點(diǎn).
【解析】
(1)以為坐標(biāo)原點(diǎn),分別以,,所在直線為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系,得到,,再代入向量夾角公式計(jì)算,即可得答案;
(2)設(shè),得,直線與平面所成角為,得到關(guān)于的方程,解方程即可得到點(diǎn)的位置.
以為坐標(biāo)原點(diǎn),分別以,,所在直線為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系,則,,,.
(1)因?yàn)?/span>,所以.
所以,.
所以.
所以異面直線和所成角的余弦值為.
(2)由,,,
知,.
設(shè)平面的法向量為,由得,
令,則,,所以平面的一個(gè)法向量為.
因?yàn)辄c(diǎn)在線段上,所以可設(shè),所以,
因?yàn)橹本與平面所成角為,所以.
由,得,
解得或.
因?yàn)辄c(diǎn)在線段上,所以,
即點(diǎn)是線段的中點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與y軸交于點(diǎn)A,與拋物線交于P,Q,點(diǎn)B與點(diǎn)A關(guān)于x軸對(duì)稱,連接QB,BP并延長(zhǎng)分別與x軸交于點(diǎn)M,N.
(1)若,求拋物線C的方程;
(2)若,求外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐中,底面為平行四邊形
∠ADC=45°,,為的中點(diǎn),⊥平面,,為的中點(diǎn).
(1)證明:⊥平面;
(2)求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,,底面,分別是棱,,的中點(diǎn).
(1)證明:平面;
(2)若,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,B為AC的中點(diǎn),分別以AB,AC為直徑在AC的同側(cè)作半圓,M,N分別為兩半圓上的動(dòng)點(diǎn)不含端點(diǎn)A,B,,且,則的最大值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)集具有性質(zhì)對(duì)任意的,使得成立.
(1)分別判斷數(shù)集與是否具有性質(zhì),并說(shuō)明理由;
(2)求證: ;
(2)若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,是兩個(gè)不重合的平面,在下列條件中,可判斷平面,平行的是( )
A.,是平面內(nèi)兩條直線,且,
B.,是兩條異面直線,,,且,
C.面內(nèi)不共線的三點(diǎn)到的距離相等
D.面,都垂直于平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求的最大值與最小值;
(2)若對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com