精英家教網 > 高中數學 > 題目詳情
設AB是平面的斜線段,A為斜足,若點P在平面內運動,使得△ABP的面積為定值,則動點P的軌跡是     
橢圓

試題分析:本題其實就是一個平面斜截一個圓柱表面的問題,因為三角形面積為定值,以AB為底,則底邊長一定,從而可得P到直線AB的距離為定值,分析可得,點P的軌跡為一以AB為軸線的圓柱面,與平面α的交線,且α與圓柱的軸線斜交,由平面與圓柱面的截面的性質判斷,可得P的軌跡為橢圓.
點評:解決此類問題意截面與圓柱的軸線的不同位置時得到的截面形狀也不同
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

手表的表面在一平面上.整點1,2,…,12這12個數字等間隔地分布在半徑為的圓周上.從整點到整點的向量記作,則          

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知點及拋物線上的動點,則的最小值為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

過拋物線的焦點的直線與拋物線交于A、B兩點,拋物線準線與x軸交于C點,若,則|AF|-|BF|的值為(      )
A.                 B.                 C.               D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設雙曲線的離心率為e=,右焦點為F(c,0),方程ax2-bx-c=0的兩個實根分別為x1和x2,則點P(x1,x2
A.在圓x2+y2=8外B.在圓x2+y2=8上
C.在圓x2+y2=8內 D.不在圓x2+y2=8內

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設雙曲線x2-y2=1的兩條漸近線與直線x=圍成的三角形區(qū)域(包含邊界)為E,P(x,y)為該區(qū)域的一個動點,則目標函數z=x-2y的最小值為________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設雙曲線  的右焦點為,右準線  與兩條漸近線交于兩點,如果是等邊三角形,則雙曲線的離心率的值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某海域有、兩個島嶼,島在島正東4海里處。經多年觀察研究發(fā)現,某種魚群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)現過魚群。以、所在直線為軸,的垂直平分線為軸建立平面直角坐標系。

(1)求曲線的標準方程;(6分)
(2)某日,研究人員在、兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),、兩島收到魚群在處反射信號的時間比為,問你能否確定處的位置(即點的坐標)?(8分)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

一動圓圓心在拋物線上,且動圓恒與直線相切,則動圓必過定點
A.B.C.D.

查看答案和解析>>

同步練習冊答案