已知平面α,β和直線m,則滿足下列條件中
 
 (填上所有正確的序號(hào))能使 m⊥β成立.
①m∥α,②m⊥α;③m?α;④α∥β.
考點(diǎn):平面與平面之間的位置關(guān)系
專題:證明題,空間位置關(guān)系與距離
分析:利用線面垂直的判定方法,可得m⊥α,α∥β能使m⊥β成立,即可得出結(jié)論.
解答: 解:利用線面垂直的判定方法,可得m⊥α,α∥β能使m⊥β成立,
故答案為:②④
點(diǎn)評(píng):本題考查直線與平面平行的判定,一般有兩種思路:判定定理和定義,要注意根據(jù)條件選擇使用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:4x2+y2=1及直線L:y=x+m.
(1)當(dāng)直線L和橢圓C有公共點(diǎn)時(shí),求實(shí)數(shù)m的取值范圍;
(2)當(dāng)直線L被橢圓C截得的弦最長(zhǎng)時(shí),求直線L所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)為定義在R上的奇函數(shù),f(x+2)=-f(x).當(dāng)x∈[-1,0]時(shí),f(x)=f0(x)=x3
(1)當(dāng)x∈[1,3]時(shí),求y=f1(x)的解析式;
(2)記y=f(x),x∈(4k-1,4k+1],k∈Z為y=fk(x),求y=fk(x)及其反函數(shù)y=fk-1(x)的解析式;
(3)定義g(x)=2k+(-1)kf(x),其中x∈[2k-1,2k+1],探究方程g(x)-b=0(b>0)在區(qū)間[-2013,2013]上的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x、y滿足
y≤x
x+2y≤4
y≥-2
,且(x-1)2+(y-2)2=r2(r>0),則r的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱柱ADF-BCE中,DF⊥平面ABCD,AD=DC,G是DF的中點(diǎn)
(Ⅰ)求證:BF∥平面ACG;
(Ⅱ)求證:平面ACG⊥平面BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若csinC=acosB+bcosA,則△ABC的形狀為(  )
A、銳角三角形
B、等邊三角形
C、直角三角形
D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若全集U={1,2,3,4,5,6,7,8},B={x|1≤x≤5,x∈Z},C={x|2<x<9,x∈Z}.求(∁UB)∪(∁UC).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos2x+sinxcosx-
1
2
,
(1)求函數(shù)f(x)的最大值和最小正周期;
(2)求函數(shù)f(x)的最大值及取最大值時(shí)x的取值集合;
(3)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式ax2-bx+2>0的解集為{x|-
1
2
<x<
1
3
},則a+b=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案