已知動點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030518914400.png)
到點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030518914553.png)
的距離等于它到直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030518930332.png)
的距離,則點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030518914400.png)
的軌跡方程是
.
試題分析:設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030518977664.png)
,因為動點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030518914400.png)
到點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030518914553.png)
的距離等于它到直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030518930332.png)
的距離,所以根據(jù)兩點(diǎn)間的距離公式和點(diǎn)到直線的距離公式可得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030519055836.png)
,化簡可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030518914400.png)
拋物線的軌跡方程為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030518961665.png)
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032213805313.png)
的中心在原點(diǎn),焦點(diǎn)在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032213821275.png)
軸上,長軸長為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032213836248.png)
,且點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032213852758.png)
在橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032213805313.png)
上.
(1)求橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032213805313.png)
的方程;
(2)設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032213883289.png)
是橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032213805313.png)
長軸上的一個動點(diǎn),過
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032213883289.png)
作方向向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032213930591.png)
的直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032213946280.png)
交橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032213805313.png)
于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032213977300.png)
、
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032213977309.png)
兩點(diǎn),求證:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032213992657.png)
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930792619.png)
的左、右焦點(diǎn)分別是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930808333.png)
、
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930823353.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930839289.png)
是橢圓右準(zhǔn)線上的一點(diǎn),線段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930855407.png)
的垂直平分線過點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930823353.png)
.又直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930886314.png)
:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930886458.png)
按向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930901639.png)
平移后的直線是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930917337.png)
,直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930933340.png)
:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930948467.png)
按向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930964647.png)
平移后的直線是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930964331.png)
(其中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930979486.png)
)。
(1) 求橢圓的離心率
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030931011256.png)
的取值范圍。
(2)當(dāng)離心率
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030931011256.png)
最小且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030931026352.png)
時,求橢圓的方程。
(3)若直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930917337.png)
與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930964331.png)
相交于(2)中所求得的橢圓內(nèi)的一點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930839289.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930917337.png)
與這個橢圓交于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030931120300.png)
、
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030931135313.png)
兩點(diǎn),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030930964331.png)
與這個橢圓交于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030931182309.png)
、
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030931198315.png)
兩點(diǎn)。求四邊形ABCD面積
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030931213322.png)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知雙曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240307171621121.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030717178327.png)
、
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030717194355.png)
是雙曲線的左右頂點(diǎn),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030717194732.png)
是雙曲線上除兩頂點(diǎn)外的一點(diǎn),直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030717225501.png)
與直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030717225525.png)
的斜率之積是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030717240491.png)
,
求雙曲線的離心率;
若該雙曲線的焦點(diǎn)到漸近線的距離是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030717256325.png)
,求雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030556214266.png)
軸上的拋物線被直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030556229572.png)
截得的弦長為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030556245354.png)
,求拋物線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)橢圓C:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240304103521105.png)
過點(diǎn)(0,4),離心率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030410368369.png)
(Ⅰ)求C的方程;(Ⅱ)求過點(diǎn)(3,0)且斜率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030410383346.png)
的直線被C所截線段的長度.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知拋物線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030359728652.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030359744314.png)
為坐標(biāo)原點(diǎn),動直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030359760787.png)
與
拋物線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030359775306.png)
交于不同兩點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030359775379.png)
(1)求證:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030359791390.png)
·
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030359806382.png)
為常數(shù);
(2)求滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030359822746.png)
的點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824030359838373.png)
的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知動圓經(jīng)過點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025816731533.png)
,且和直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025816746448.png)
相切,
(1)求動圓圓心的軌跡C的方程;
(2)已知曲線C上一點(diǎn)M,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025816762518.png)
5,求M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知拋物線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017490660.png)
與雙曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240240175051188.png)
有公共焦點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017521353.png)
,點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017536300.png)
是曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017552449.png)
在第一象限的交點(diǎn),且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017568557.png)
.
(Ⅰ)求雙曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017583372.png)
的方程;
(Ⅱ)以雙曲線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017583372.png)
的另一焦點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017630333.png)
為圓心的圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017646399.png)
與直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017661532.png)
相切,圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017677357.png)
:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017692701.png)
.過點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017708558.png)
作互相垂直且分別與圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017646399.png)
、圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017677357.png)
相交的直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017739314.png)
和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017755337.png)
,設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017739314.png)
被圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017646399.png)
截得的弦長為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017802258.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017755337.png)
被圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017677357.png)
截得的弦長為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017833267.png)
,問:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024017848354.png)
是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
查看答案和解析>>