【題目】已知

討論的單調性;

若在定義域內總存在使成立的最小值

【答案】見解析的最小值是

【解析】試題分析:(1定義域為 ,分類討論得到單調性情況;(2)分參得到恒成立,令,求導得到上單調減,上單調增,所以,得。

試題解析:

定義域為,

①當,解得 ,解得

上單調遞減,上單調遞增;

②當,解得 ,解得

上單調遞減,上單調遞增;

③當, (僅在時等號成立

上單調遞增

④當,解得 ,解得

上單調遞減,上單調遞增

(Ⅱ)由已知,在定義域內總存在使成立,

,使成立

,

上單調遞增,上單調遞減

所以 式轉化為

使成立

,

,

上單調減,上單調增

所以, 的最小值是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的極坐標方程為. 

(1)當時,求曲線和曲線的交點的直角坐標;

(2)當時,設, 分別是曲線與曲線上動點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , 平面, , .

1)求證: ;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為梯形, 底面, , , , . 

1)求證:平面 平面

2)設上的一點,滿足,若直線與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一名同學家開了一個小賣部,他為了研究氣溫對某種引領銷售的影響,記錄了2015年7月至12月每月15號下午14時的氣溫和當天的飲料杯數(shù),得到如下資料:

該同學確定的研究方案是:現(xiàn)從這六組數(shù)據中選取2組,用剩下的4組數(shù)據取線性回歸方程,再用被選中的2組數(shù)據進行檢驗.

(1)求選取2組數(shù)據恰好是相鄰兩個月的概率

(2)若選中的是8月與12月的兩組數(shù)據,根據剩下的4組數(shù)據,求出關于的線性回歸方程;

(3)若有線性回歸方程得到估計,數(shù)據與所宣稱的檢驗數(shù)據的誤差不超過3杯,則認為得到的線性回歸方程是理想的,請問(2)所得線性回歸方程是否理想.

附:對于一組數(shù)據,其回歸直線 的斜率和截距的最小二乘法估計分別為: , .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為增強市民的節(jié)能環(huán)保意識,汕頭市面向全市征召義務宣傳志愿者,從符合條件的 500 名志愿者中隨機抽取 100 名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是:

(1)求圖中的值,并根據頻率分布直方圖估計這 500 名志愿者中年齡在歲的人數(shù);

(2)在抽出的 100 名志愿者中按年齡采用分層抽樣的方法抽取 10 名參加人民廣場的宣傳活動,再從這 10 名志愿者中選取 3 名擔任主要負責人.記這 3 名志愿者中“年齡低于 35 歲”的人數(shù)為 ,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雞的產蛋量與雞舍的溫度有關,為了確定下一個時段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度(單位:℃),對某種雞的時段產蛋量(單位: )和時段投入成本(單位:萬元)的影響,為此,該企業(yè)收集了7個雞舍的時段控制溫度和產蛋量的數(shù)據,對數(shù)據初步處理后得到了如圖所示的散點圖和表中的統(tǒng)計量的值.

17.40

82.30

3.6

140

9.7

2935.1

35.0

其中.

1)根據散點圖判斷, 哪一個更適宜作為該種雞的時段產蛋量關于雞舍時段控制溫度的回歸方程類型?(給判斷即可,不必說明理由)

2)若用作為回歸方程模型,根據表中數(shù)據,建立關于的回歸方程;

3)已知時段投入成本的關系為,當時段控制溫度為28℃時,雞的時段產蛋量及時段投入成本的預報值分別是多少?

附:①對于一組具有有線性相關關系的數(shù)據,其回歸直線的斜率和截距的最小二乘估計分別為

0.08

0.47

2.72

20.09

1096.63

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知 , ,平面平面, , 中點.

(Ⅰ)證明: 平面;

(Ⅱ)求直線與平面所成角的余弦值.

查看答案和解析>>

同步練習冊答案