【題目】已知集合A={y|y= },B={x|y=lg(x﹣2x2)},則R(A∩B)=( )
A.[0, )
B.(﹣∞,0)∪[ ,+∞)
C.(0, )
D.(﹣∞,0]∪[ ,+∞)
【答案】D
【解析】解:集合A={y|y= }={y|y≥0}=[0,+∞); B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x< }=(0, ),
∴A∩B=(0, ),
∴R(A∩B)=(﹣∞,0]∪[ ,+∞).
故選:D.
【考點精析】本題主要考查了交、并、補集的混合運算的相關知識點,需要掌握求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結合的思想方法才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的圖象的一條對稱軸方程是 ,函數(shù)f'(x)的圖象的一個對稱中心是 ,則f(x)的最小正周期是( )
A.
B.
C.π
D.2π
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年郴州市兩會召開前夕,某網站推出兩會熱點大型調查,調查數(shù)據(jù)表明,民生問題時百姓最為關心的熱點,參與調查者中關注此問題的約占80%,現(xiàn)從參與者中隨機選出200人,并將這200人按年齡分組:第1組[15,25),第2組[25,35),第3組[35,45),第4組[45,55),第5組[55,65),得到的頻率分布直方圖如圖所示.
(1)求出頻率分布直方圖中的a值,并求出這200的平均年齡;
(2)現(xiàn)在要從年齡較小的第1,2,3組用分層抽樣的方法抽取12人,再從這12人中隨機抽取3人贈送禮品,求抽取的3人中至少有1人的年齡在第3組的概率;
(3)若要從所有參與調查的人(人數(shù)很多)中隨機選出3人,記關注民生問題的人數(shù)為X,求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐P﹣ABC中,AP=AB,平面PAB⊥平面ABC,∠ABC=90°,D,E分別為PB,BC的中點.
(1)求證:DE∥平面PAC;
(2)求證:DE⊥AD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關于實數(shù)x的一元二次方程.
Ⅰ若a是從區(qū)間中任取的一個整數(shù),b是從區(qū)間中任取的一個整數(shù),求上述方程有實根的概率.
Ⅱ若a是從區(qū)間任取的一個實數(shù),b是從區(qū)間任取的一個實數(shù),求上述方程有實根的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十九大提出,堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結合,幫助貧困村種植蜜柚,并利用電商進行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機摘下了100個蜜柚進行測重,其質量分別在, , , , , (單位:克)中,其頻率分布直方圖如圖所示.
(1)求質量落在, 兩組內的蜜柚的抽取個數(shù),
(2)從質量落在, 內的蜜柚中隨機抽取2個,求這2個蜜柚質量均小于2000克的概率;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知當x<1時,f(x)=(2﹣a)x+1;當x≥1時,f(x)=ax(a>0且a≠1).若對任意x1≠x2 , 都有 成立,則a的取值范圍是( )
A.(1,2)
B.
C.
D.(0,1)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經驗,每天需求量與當天最高氣溫(單位:℃)有關.如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.
(Ⅰ)求六月份這種酸奶一天的需求量X(單位:瓶)的分布列;
(Ⅱ)設六月份一天銷售這種酸奶的利潤為Y(單位:元),當六月份這種酸奶一天的進貨量n(單位:瓶)為多少時,Y的數(shù)學期望達到最大值?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com