【題目】已知Sn是正項(xiàng)數(shù)列{an}的前n項(xiàng)和,且滿足a146Snan2+3an+λnN*,λR),設(shè)bn=(nμan,若b2是數(shù)列{bn}中唯一的最小項(xiàng),則實(shí)數(shù)μ的取值范圍是_____.

【答案】

【解析】

先根據(jù)數(shù)列滿足,,求出其通項(xiàng)公式,進(jìn)而求出的通項(xiàng)公式,再結(jié)合是數(shù)列中唯一的最小項(xiàng),即可求出實(shí)數(shù)的取值范圍.

Sn是正項(xiàng)數(shù)列{an}的前n項(xiàng)和,且滿足a1=4,6Sn=an2+3an+λ(nN*,λR),

6×4=42+3×4+λλ=4,

6Sn=an2+3an4,

6Sn1=an12+3an14,

①﹣②6an=an2+3an4(an12+3an14)(an+an1)(anan13)=0,

an>0anan13=0數(shù)列{an}是首項(xiàng)為4,公差為3的等差數(shù)列,

an=4+3(n1)=3n+1,

bn=(nμ)an=(nμ)(3n+1)=3n2+(13μ)nμ;

b2是數(shù)列{bn}中唯一的最小項(xiàng),

∴其對(duì)稱軸(,).

故答案為:(,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,過點(diǎn)作斜率為的直線交拋物線于兩點(diǎn).

1)若,求的面積;

2)過點(diǎn)分別作拋物線的兩條切線,且直線與直線相交于點(diǎn),問:點(diǎn)是否在某條定直線上?若在,求該定直線的方程;若不在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓離心率為,四個(gè)頂點(diǎn)構(gòu)成的四邊形的面積是4.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)若直線與橢圓C交于P,Q均在第一象限,直線OP,OQ的斜率分別為,且(其中O為坐標(biāo)原點(diǎn)).證明:直線l的斜率k為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,ABAC,A1CBC1,AB1BC1D,E分別是AB1BC的中點(diǎn).

求證:(1)DE∥平面ACC1A1;

(2)AE⊥平面BCC1B1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)gx)=﹣4sin2+2圖象上點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),再向右平移個(gè)單位長度,得到函數(shù)fx)的圖象,則下列說法正確的是(

A.函數(shù)fx)在區(qū)間[,]上單調(diào)遞減

B.函數(shù)fx)的最小正周期為2π

C.函數(shù)fx)在區(qū)間[,]的最小值為

D.x是函數(shù)fx)的一條對(duì)稱軸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).M是曲線上的動(dòng)點(diǎn),將線段OM繞O點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段ON,設(shè)點(diǎn)N的軌跡為曲線.以坐標(biāo)原點(diǎn)O為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程;

(2)在(1)的條件下,若射線與曲線分別交于A, B兩點(diǎn)(除極點(diǎn)外),且有定點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,已知橢圓上存在點(diǎn),使,且這樣的點(diǎn)有且只有兩個(gè).

1)求橢圓的離心率;

2)過點(diǎn)的直線與橢圓相交于兩點(diǎn),且,是坐標(biāo)原點(diǎn),求的面積取得最大值時(shí)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)F是拋物線Cy22pxp0)的焦點(diǎn),若點(diǎn)Px04)在拋物線C上,且.

1)求拋物線C的方程;

2)動(dòng)直線lxmy+1mR)與拋物線C相交于A,B兩點(diǎn),問:在x軸上是否存在定點(diǎn)Dt,0)(其中t≠0),使得kAD+kBD0,(kADkBD分別為直線AD,BD的斜率)若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

1)分別寫出曲線和曲線的極坐標(biāo)方程;

2P為曲線上的任意一點(diǎn),過P向曲線引兩條切線PA、PB,當(dāng)最大時(shí),求P點(diǎn)的極坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案