【題目】已知集合A={x|a≤x≤a+8},B={x|x<﹣1或x>5},
(1)當a=0時,求A∩B,A∪(CRB);
(2)若A∪B=B,求實數a的取值范圍.
【答案】
(1)解:當a=0時,A={x|0≤x≤8},
∵B={x|x<﹣1或x>5},全集為R,
∴A∩B={x|5<x≤8},RB={x|﹣1≤x≤5},
則A∪RB={x|﹣1≤x≤8}
(2)解:∵A∪B=B,∴AB,
∴a+8<﹣1或a>5,
解得:a<﹣9或a>5
【解析】(1)將a=0代入集合A中確定出解集,求出A與B的交集即可;由全集R求出B的補集,找出A與B補集的并集即可;(2)由A與B的并集為B,得到A為B的子集,列出關于a的不等式,求出不等式的解集即可確定出a的范圍.
【考點精析】解答此題的關鍵在于理解集合的并集運算的相關知識,掌握并集的性質:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,則AB,反之也成立,以及對交、并、補集的混合運算的理解,了解求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數軸進而用集合語言表達,增強數形結合的思想方法.
科目:高中數學 來源: 題型:
【題目】袋中有五張卡片,其中紅色卡片三張,標號分別為1,2,3;藍色卡片兩張,標號分別為1,2.
(1)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率;
(2)現袋中再放入一張標號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+bx+1(a,b為實數,a≠0,x∈R)
(1)若函數f(x)的圖象過點(﹣2,1),且函數f(x)有且只有一個零點,求f(x)的表達式;
(2)在(1)的條件下,當x∈(﹣1,2)時,g(x)=f(x)﹣kx是單調函數,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知角α的頂點在坐標原點,始邊與x軸的非負半軸重合,終邊經過點 .
(1)求sin2α﹣tanα的值;
(2)若函數f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα,求函數 在區(qū)間 上的值域.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com