【題目】已知數(shù)列{an}滿足 ,記數(shù)列{an}的前n項(xiàng)和為Sn , cn=Sn﹣2n+2ln(n+1)
(1)令 ,證明:對(duì)任意正整數(shù)n,|sin(bnθ)|≤bn|sinθ|
(2)證明數(shù)列{cn}是遞減數(shù)列.
【答案】
(1)證明:∵ , ,
∴bn+1= = = =1+ =1+bn,
∴bn+1﹣bn=1,∴數(shù)列{bn}是等差數(shù)列,首項(xiàng)b1= =1,公差為1.
∴bn=1+(n﹣1)=n.
對(duì)任意正整數(shù)n,要證明|sin(bnθ)|≤bn|sinθ|,只要證明:|sinnθ|≤n|sinθ|,(*).
下面利用數(shù)學(xué)歸納法證明:
①當(dāng)n=1時(shí),(*)成立.
②假設(shè)n=k時(shí),(*)成立,即|sinkθ|≤k|sinθ|,
則當(dāng)n=k+1時(shí),|sin(k+1)θ|=|sinkθcosθ+coskθsinθ|≤|sinkθ||cosθ|+|coskθ||sinθ|≤|sinkθ|+|sinθ|≤(k+1)|sinθ|,
即n=k+1時(shí),(*)成立.
由①②可知:對(duì)任意正整數(shù)n,|sin(bnθ)|≤bn|sinθ|
(2)證明:由(1)可得: ,解得an=2﹣ .
cn=Sn﹣2n+2ln(n+1),當(dāng)n≥2時(shí),cn﹣1=Sn﹣1﹣2(n﹣1)+2lnn,
∴cn﹣cn﹣1=an﹣2+2ln =﹣ +2ln =2(ln ﹣ ).(n≥2).
令1+ =x, .記f(x)=lnx﹣(x﹣1),
f′(x)= ﹣1= <0,∴f(x)在 上單調(diào)遞減,
∴f(x)<f(1)=0,∴l(xiāng)n ﹣ <0.
∴cn﹣cn﹣1<0,即cn<cn﹣1,
∴數(shù)列{cn}是遞減數(shù)列.
【解析】(1)由于 , ,可得bn+1= =1+bn , 利用等差數(shù)列的通項(xiàng)公式可得bn=n.對(duì)任意正整數(shù)n,要證明|sin(bnθ)|≤bn|sinθ|,只要證明:|sinnθ|≤n|sinθ|,利用數(shù)學(xué)歸納法證明即可.(2)由(1)可得: ,解得an=2﹣ .cn=Sn﹣2n+2ln(n+1),當(dāng)n≥2時(shí),可得cn﹣cn﹣1=2(ln ﹣ ).(n≥2).令1+ =x, .記f(x)=lnx﹣(x﹣1),利用導(dǎo)數(shù)研究其單調(diào)性即可得出.
【考點(diǎn)精析】利用數(shù)列的前n項(xiàng)和對(duì)題目進(jìn)行判斷即可得到答案,需要熟知數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,曲線上任意一點(diǎn)滿足;曲線上的點(diǎn)在軸的右邊且到的距離與它到軸的距離的差為1.
(1)求的方程;
(2)過的直線與相交于點(diǎn),直線分別與相交于點(diǎn)和.求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)x,y滿足方程x2+y2-4x+1=0.
(1)求的最大值和最小值;
(2)求y-x的最大值和最小值;
(3)求x2+y2的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx.
(1)求函數(shù)f(x)的圖象在x=1處的切線方程;
(2)若函數(shù)y=f(x)+ 在[ ,+∞)上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)k的取值范圍;
(3)是否存在實(shí)數(shù)k,使得對(duì)任意的x∈( ,+∞),都有函數(shù)y=f(x)+ 的圖象在g(x)= 的圖象的下方;若存在,請(qǐng)求出最大整數(shù)k的值,若不存在,請(qǐng)說明理由(參考數(shù)據(jù):ln2=0.6931, =1.6487).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,(a>0,b∈R)
(1)當(dāng)x≠0時(shí),求證:f(x)=f( );
(2)若函數(shù)y=f(x),x∈[ ,2]的值域?yàn)閇5,6],求f(x);
(3)在(2)條件下,討論函數(shù)g(x)=f(2x)﹣k(k∈R)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時(shí),xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(logax)= ,(0<a<1)
(1)求f(x)的表達(dá)式,并判斷f(x)的奇偶性;
(2)判斷f(x)的單調(diào)性;
(3)對(duì)于f(x),當(dāng)x∈(﹣1,1)時(shí),恒有f(1﹣m)+f(1﹣m2)<0,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com