(12分)已知數(shù)列{}的首項(xiàng)a1=5,前n項(xiàng)和為Sn,且Sn+1=2Sn+n+5
(1)求證{1+}為等比數(shù)列,并求數(shù)列{}的通項(xiàng)公式;
(2)是數(shù)列{}前n項(xiàng)和,求Tn
;
(2) 
本試題主要是考查了數(shù)列的通項(xiàng)公式的求解和數(shù)學(xué)求和的綜合運(yùn)用。
(1)利用前n項(xiàng)和與通項(xiàng)公式的關(guān)系,對(duì)于n令值,當(dāng)n=1,n》2時(shí),分別討論得到其通項(xiàng)公式結(jié)論
(2)由上一問知道,然后利用裂項(xiàng)求和的思想求解數(shù)列的和,。
解:⑴由已知: ①
當(dāng) ②,  兩式相減得:
   即, …………3分
當(dāng)時(shí),   
,,從而……4分
   ,……5分
即數(shù)列是首項(xiàng)為,公比為2的等比數(shù)列;……7分
(2)……10分
  12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)已知數(shù)列為等比數(shù)列,其前項(xiàng)和為,已知,且對(duì)于任意的,成等差;
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)已知),記,若對(duì)于恒成立,求實(shí)數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列的公差,它的前n項(xiàng)和為,若成等比數(shù)列.
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè)數(shù)列的前n項(xiàng)和為Tn,求Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)已知等差數(shù)列的公差大于0,且是方程的兩根.數(shù)列的前項(xiàng)和為,滿足
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,記.若為數(shù)列中的最大項(xiàng),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列中,.
(1)設(shè),求證:數(shù)列是常數(shù)列,并寫出其通項(xiàng)公式;
(2)設(shè),求證:數(shù)列是等比數(shù)列,并寫出其通項(xiàng)公式;
(3)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知Sn是數(shù)列的前n項(xiàng)和,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),是否存在最大的正整數(shù)k,使得對(duì)于任意的正整數(shù)n,有恒成立?若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知等差數(shù)列中,,,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列{an}中,已知a4+a8=16,則a2+a10=
A.12B.16C.20D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列的前項(xiàng)和滿足:對(duì)于任意,都有;若,則=      

查看答案和解析>>

同步練習(xí)冊(cè)答案