【題目】在中,點(diǎn),角的內(nèi)角平分線(xiàn)所在直線(xiàn)的方程為邊上的高所在直線(xiàn)的方程為.
(Ⅰ) 求點(diǎn)的坐標(biāo);
(Ⅱ) 求的面積.
【答案】(Ⅰ);(Ⅱ)48.
【解析】
試題(Ⅰ)根據(jù)題意可知直線(xiàn)的斜率為,過(guò)點(diǎn),則直線(xiàn)的方程為,點(diǎn)剛好是邊上的高所在直線(xiàn)與角的內(nèi)角平分線(xiàn)所在直線(xiàn)的交點(diǎn),即, 又因?yàn)?/span>的內(nèi)角平分線(xiàn)所在直線(xiàn)的方程為,所以點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)在直線(xiàn)上,即可求出直線(xiàn)的方程,在根據(jù)點(diǎn)是直線(xiàn)和的交點(diǎn),即的坐標(biāo)為;(Ⅱ)根據(jù)、點(diǎn)坐標(biāo),求出,再根據(jù)點(diǎn)到直線(xiàn)的距離公式,求出點(diǎn)到直線(xiàn)的距離是,所以的面積.
試題解析:(Ⅰ)由題意知的斜率為-2,又點(diǎn),
直線(xiàn)的方程為,即.
解方程組得
點(diǎn)的坐標(biāo)為.
又的內(nèi)角平分線(xiàn)所在直線(xiàn)的方程為,
點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)在直線(xiàn)上,
直線(xiàn)的方程為,即.
解方程組得
點(diǎn)的坐標(biāo)為.
(Ⅱ),
又直線(xiàn)的方程是,
點(diǎn)到直線(xiàn)的距離是,
的面積是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年,教育部發(fā)文確定新高考改革正式啟動(dòng),湖南、廣東、湖北等8省市開(kāi)始實(shí)行新高考制度,從2018年下學(xué)期的高一年級(jí)學(xué)生開(kāi)始實(shí)行.為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測(cè)評(píng),在成績(jī)統(tǒng)計(jì)分析中,高二某班的數(shù)學(xué)成績(jī)的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見(jiàn)部分如下,據(jù)此解答如下問(wèn)題:
(1)求該班數(shù)學(xué)成績(jī)?cè)?/span>的頻率及全班人數(shù);
(2)根據(jù)頻率分布直方圖估計(jì)該班這次測(cè)評(píng)的數(shù)學(xué)平均分;
(3)若規(guī)定分及其以上為優(yōu)秀,現(xiàn)從該班分?jǐn)?shù)在分及其以上的試卷中任取份分析學(xué)生得分情況,求在抽取的份試卷中至少有份優(yōu)秀的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)經(jīng)過(guò)一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:
則下面結(jié)論中不正確的是
A. 新農(nóng)村建設(shè)后,種植收入減少
B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上
C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍
D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過(guò)了經(jīng)濟(jì)收入的一半
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年某地遭遇嚴(yán)重干旱,某鄉(xiāng)計(jì)劃向上級(jí)申請(qǐng)支援,為上報(bào)需水量,鄉(xiāng)長(zhǎng)事先抽樣調(diào)查100戶(hù)村民的月均用水量,得到這100戶(hù)村民月均用水量(單位:t)的頻率分布表如下:
月均用水量分組 | 頻數(shù) | 頻率 |
12 | ||
40 | ||
0.18 | ||
6 | ||
合計(jì) | 100 | 1.00 |
(1)請(qǐng)完成該頻率分布表,并畫(huà)出相對(duì)應(yīng)的頻率分布直方圖.
(2)樣本的中位數(shù)是多少?
(3)已知上級(jí)將按每戶(hù)月均用水量向該鄉(xiāng)調(diào)水,若該鄉(xiāng)共有1200戶(hù),請(qǐng)估計(jì)上級(jí)支援該鄉(xiāng)的月調(diào)水量是多少?lài)?/span>.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)前,以“立德樹(shù)人”為目標(biāo)的課程改革正在有序推進(jìn).高中聯(lián)招對(duì)初三畢業(yè)學(xué)生進(jìn)行體育測(cè)試,是激發(fā)學(xué)生、家長(zhǎng)和學(xué)校積極開(kāi)展體育活動(dòng),保證學(xué)生健康成長(zhǎng)的有效措施.程度2019年初中畢業(yè)生升學(xué)體育考試規(guī)定,考生必須參加立定跳遠(yuǎn)、擲實(shí)心球、1分鐘跳繩三項(xiàng)測(cè)試,三項(xiàng)考試滿(mǎn)分50分,其中立定跳遠(yuǎn)15分,擲實(shí)心球15分,1分鐘跳繩20分.某學(xué)校在初三上期開(kāi)始時(shí)要掌握全年級(jí)學(xué)生每分鐘跳繩的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行測(cè)試,得到下邊頻率分布直方圖,且規(guī)定計(jì)分規(guī)則如下表:
每分鐘跳繩個(gè)數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(Ⅰ)現(xiàn)從樣本的100名學(xué)生中,任意選取2人,求兩人得分之和不大于35分的概率;;
(Ⅱ)若該校初三年級(jí)所有學(xué)生的跳繩個(gè)數(shù)服從正態(tài)分布,用樣本數(shù)據(jù)的平均值和方差估計(jì)總體的期望和方差,已知樣本方差(各組數(shù)據(jù)用中點(diǎn)值代替).根據(jù)往年經(jīng)驗(yàn),該校初三年級(jí)學(xué)生經(jīng)過(guò)一年的訓(xùn)練,正式測(cè)試時(shí)每人每分鐘跳繩個(gè)數(shù)都有明顯進(jìn)步,假設(shè)今年正式測(cè)試時(shí)每人每分鐘跳繩個(gè)數(shù)比初三上學(xué)期開(kāi)始時(shí)個(gè)數(shù)增加10個(gè),現(xiàn)利用所得正態(tài)分布模型:
預(yù)計(jì)全年級(jí)恰有2000名學(xué)生,正式測(cè)試每分鐘跳182個(gè)以上的人數(shù);(結(jié)果四舍五入到整數(shù))
若在全年級(jí)所有學(xué)生中任意選取3人,記正式測(cè)試時(shí)每分鐘跳195以上的人數(shù)為ξ,求隨機(jī)變量的分布列和期望.
附:若隨機(jī)變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)M到定點(diǎn)F1(-2,0)和F2(2,0)的距離之和為.
(1)求動(dòng)點(diǎn)M軌跡C的方程;
(2)設(shè)N(0,2),過(guò)點(diǎn)P(-1,-2)作直線(xiàn)l,交橢圓C于不同于N的A,B兩點(diǎn),直線(xiàn)NA,NB的斜率分別為k1,k2,問(wèn)k1+k2是否為定值?若是的求出這個(gè)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】統(tǒng)計(jì)表明,某種型號(hào)的汽車(chē)在勻速行駛中每小時(shí)耗油量(升)關(guān)于行駛速度(千米/小時(shí))的函數(shù)解析式可以表示為: ,已知甲、乙兩地相距100千米.
(1)當(dāng)汽車(chē)以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?
(2)當(dāng)汽車(chē)以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是拋物線(xiàn)的焦點(diǎn),若點(diǎn)在拋物線(xiàn)上,且
求拋物線(xiàn)的方程;
動(dòng)直線(xiàn)與拋物線(xiàn)相交于兩點(diǎn),問(wèn):在軸上是否存在定點(diǎn)其中,使得向量與向量共線(xiàn)其中為坐標(biāo)原點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,AB= ,AD=2,E,F為線(xiàn)段AB的三等分點(diǎn),G、H為線(xiàn)段DC的三等分點(diǎn).將長(zhǎng)方形ABCD卷成以AD為母線(xiàn)的圓柱W的半個(gè)側(cè)面,AB、CD分別為圓柱W上、下底面的直徑.
(Ⅰ)證明:平面ADHF⊥平面BCHF;
(Ⅱ)若P為DC的中點(diǎn),求三棱錐H—AGP的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com