在△ABC中,∠B=105°,∠C=30°,c=10,求a,b.
考點:正弦定理
專題:計算題,解三角形
分析:由B與C的度數(shù)求出A的度數(shù),再由正弦定理即可求出a,b的值.
解答: 解:∵A=30°,C=105°,
∴B=45°,
a
sinA
=
b
sinB
=
c
sinC

∴b=
csinB
sinC
=
10×sin105°
sin30°
=
10×
6
+
2
4
1
2
=5
6
+5
2

a=
csinA
sinC
=
10×sin(180°-30°-105°)
sin30°
=
10×
2
2
1
2
=10
2
點評:此題考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵,屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知p:a∈{a|對任意x∈R,不等式x2+ax+a>0恒成立},q:a∈{a|方程x2+ay2=a表示的是焦點在x軸上的橢圓},如果命題“p且q”為假命題,命題“p或q”為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
1
x-1
<1的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x+3
x-2
的對稱中心是( 。
A、(2,3)
B、(2,1)
C、(-2,1)
D、(-2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A為函數(shù)y=ln(-x2-2x+8)的定義域,集合B為函數(shù)y=x+
1
x+2
(x>-2)的值域,集合C為不等式(ax-1)(x-2)≤0的解集,(1)求A∩B;(2)若C⊆CRA,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos
π
6
sinx+2sin
π
6
cosx
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)設(shè)g(x)=f(x-
π
6
)+1,求直線y=2與y=g(x)在閉區(qū)間[0,π]上的圖象的所有交點坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸入a=1,b=2,則輸出的a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x、y滿足約束條件
y≤x
y≥-x
2x-y-4≤0
,則z=2x+y的最大值為( 。
A、12
B、4
C、
4
3
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(x,1),
b
=(4,x),
a
b
=-1,則實數(shù)x的值是
 

查看答案和解析>>

同步練習(xí)冊答案