17.在等比數(shù)列{an}中,am+n=A,am-n=B(AB>0,m>n,n∈N*),求am的值.

分析 由等比數(shù)列的性質(zhì)可得am2=am+nam-n=AB,開方可得.

解答 解:∵在等比數(shù)列{an}中,am+n=A,am-n=B(AB>0,m>n,n∈N*),
∴由等比數(shù)列的性質(zhì)可得am2=am+nam-n=AB,
∴am的值為±$\sqrt{AB}$

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.化簡($\frac{cosx}{1+sinx}$-$\frac{sinx}{1+cosx}$)(1+sinx+cosx)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知等差數(shù)列{an}中,滿足S6=S7,且a1>0,Sn是其前n項(xiàng)和,若Sn取得最大值,則n=6或7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin$\frac{x}{2}$cos$\frac{x}{2}$-$\frac{1}{2}$cos2$\frac{x}{2}$+$\frac{1}{4}$.
(1)求f(x)的最小正周期;
(2)若f(x)=-$\frac{6}{13}$,x∈[$\frac{π}{2}$,$\frac{3π}{2}$],求cosx的值;
(3)將函數(shù)f(x)的圖象向右平移m個(gè)單位,使平移后的圖象關(guān)于原點(diǎn)對(duì)稱,若0<m<π,試求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合M={0,1,2},定義集合N={x|x∈M},則這樣的集合N的個(gè)數(shù)是(  )
A.1B.3C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等差數(shù)列{an}滿足a2=0,a6+a8=10.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{{a}_{n}}{{2}^{n-1}}$}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列4個(gè)針對(duì)回歸分析的說法:
①解釋變量與預(yù)報(bào)變量之間是函數(shù)關(guān)系;
②回歸方程可以是非線性回歸方程;
③估計(jì)回歸方程時(shí)用的是二分法;
④相關(guān)指數(shù)R2越大,則回歸模型的擬合效果越好.
其中正確的說法有( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合A={x|x2-(2a+6)x-3a2-2a+5<0},B={x|x<1或x≥4}.
(1)當(dāng)A∪B=R時(shí),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)∁RB⊆∁RA時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=-$\frac{1}{x}$的單調(diào)區(qū)間是(  )
A.RB.(-∞,0)∪(0,+∞)C.(-∞,0)∩(0,+∞)D.(-∞,0),(0,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案