已知函數(shù)f(x)=ax-1(a>1且a≠1)
(1)若函數(shù)y=f(x)的圖像經(jīng)過P(3,4)點(diǎn),求a的值;
(2)若f(lga)=100,求a的值;
(3)比較f(lg)與f(-2.1)大小,并寫出過程;
解:(1)∵函數(shù)y=f(x)的圖像經(jīng)過P(3,4),
,即a2=4,
又a>0,所以a=2。
(2)由f(lga)=100知,,
所以,(或),∴,

∴l(xiāng)ga=-1或lga=2,
所以,a=或a=100
(3)當(dāng)a>1時,
當(dāng)0<a<1時,
因?yàn)椋?IMG style="VERTICAL-ALIGN: middle" border=0 src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20110514/201105141340055621450.gif">,f(-2.1)=
當(dāng)a>1時,在(-∞,+∞)上為增函數(shù),
∵-3>-3.1,∴
當(dāng)0<a<1時,y=在(-∞,+∞)上為減函數(shù),
∵-3>-3.1,∴
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案