如圖所示,、分別為橢圓:的左、右兩個(gè)焦點(diǎn),、為兩個(gè)頂點(diǎn),已知頂點(diǎn)到、兩點(diǎn)的距離之和為.
(1)求橢圓的方程;
(2)求橢圓上任意一點(diǎn)到右焦點(diǎn)的距離的最小值;
(3)作的平行線交橢圓于、兩點(diǎn),求弦長的最大值,并求取最大值時(shí)的面積.
(1);(2);(3),.
解析試題分析:(1)求橢圓方程需遵循定型、定位、定量,這里結(jié)合橢圓定義不難求得方程;(2)首先寫出表達(dá)式然后將關(guān)于的二元問題轉(zhuǎn)化為關(guān)于的一元問題,歸結(jié)為函數(shù)求最值,注意的隱含條件;(3)求直線被曲線截得的弦長是解析幾何中的常見問題,求出弦長的表達(dá)式然后求最值,一般要關(guān)注判別式,否則易犯錯(cuò).
試題解析:(1)由已知得,∴橢圓的方程為 2分
(2) ∵,且,
∴ 4分
∴僅當(dāng)為右頂點(diǎn)時(shí) 5分
(3)設(shè), ∵,∴可設(shè)直線的方程為:,代入,得 7分
由韋達(dá)定理知:,, 9分
又,
∴
僅當(dāng)時(shí), 12分
而此時(shí)點(diǎn)到直線:的距離,
∴. 13分
考點(diǎn):1.橢圓方程與性質(zhì)的互求;2.直線與橢圓的常規(guī)問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面內(nèi)動(dòng)點(diǎn)P(x,y)與兩定點(diǎn)A(-2, 0), B(2,0)連線的斜率之積等于,若點(diǎn)P的軌跡為曲線E,過點(diǎn) 直線 交曲線E于M,N兩點(diǎn).
(Ⅰ)求曲線E的方程,并證明:MAN是一定值;
(Ⅱ)若四邊形AMBN的面積為S,求S的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線的一個(gè)焦點(diǎn),并與
雙曲線的實(shí)軸垂直,已知拋物線與雙曲線的交點(diǎn)為,求拋物線的方程和雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的對(duì)稱中心為原點(diǎn),焦點(diǎn)在軸上,左右焦點(diǎn)分別為和,且||=2,離心率.
(1)求橢圓的方程;
(2)過的直線與橢圓相交于A,B兩點(diǎn),若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直線y=kx+b與曲線交于A、B兩點(diǎn),記△AOB的面積為S(O是坐標(biāo)原點(diǎn)).
(1)求曲線的離心率;
(2)求在k=0,0<b<1的條件下,S的最大值;
(3)當(dāng)|AB|=2,S=1時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線.命題p: 直線l1:與拋物線C有公共點(diǎn).命題q: 直線l2:被拋物線C所截得的線段長大于2.若為假, 為真,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知拋物線的焦點(diǎn)為F,在第一象限中過拋物線上任意一點(diǎn)P的切線為,過P點(diǎn)作平行于軸的直線,過焦點(diǎn)F作平行于的直線交于,若,則點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com