已知橢圓E:
x2
a2
+y2=1
(a>1)的離心率e=
3
2
,直線x=2t(t>0)與橢圓E交于不同的兩點(diǎn)M、N,以線段MN為直徑作圓C,圓心為C
(Ⅰ)求橢圓E的方程;
(Ⅱ)當(dāng)圓C與y軸相切的時(shí)候,求t的值;
(Ⅲ)若O為坐標(biāo)原點(diǎn),求△OMN面積的最大值.
(Ⅰ)∵橢圓E的離心率e=
3
2
,
a2-1
a
=
3
2
,
解得a=2,
故橢圓E的方程為
x2
4
+y2=1

(Ⅱ)聯(lián)立方程
x2
4
+y2=1
x=2t
,得
x=2t
y=±
1-t2
,
即M,N的坐標(biāo)分別為(2t,
1-t2
),(2t,-
1-t2
),
∵圓C的直徑為MN,且與y軸相切,
∴2t=
1-t2
,∵t>0,∴t=
5
5

(Ⅲ)由(Ⅱ)得△OMN的面積S=
1
2
×2t×2
1-t2
≤2×
t2+1-t2
2
=1,
當(dāng)且僅當(dāng)t=
1-t2
t=
2
2
時(shí),等號(hào)成立,
故△OMN的面積的最大值為1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓
x2
2
+y2=1,其右焦點(diǎn)為F,直線l經(jīng)過(guò)點(diǎn)F與橢圓交于A,B
兩點(diǎn),且|AB|=
4
2
3

(1)求直線l的方程;
(2)求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)拋物線y2=2px(p為常數(shù))的準(zhǔn)線與X軸交于點(diǎn)K,過(guò)K的直線l與拋物線交于A、B兩點(diǎn),則
OA
OB
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距為2
5
,且過(guò)點(diǎn)(-3,2),⊙O的圓心為原點(diǎn),直徑為橢圓的短軸,⊙M的方程為(x-8)2+(y-6)2=4,過(guò)⊙M上任一點(diǎn)P作⊙O的切線PA、PB,切點(diǎn)為A、B.
(1)求橢圓的方程;
(2)若直線PA與⊙M的另一交點(diǎn)為Q,當(dāng)弦PQ最大時(shí),求直線PA的直線方程;
(3)求
OA
OB
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若直線y=-x+m與曲線y=
5-
1
4
x2
只有一個(gè)公共點(diǎn),則m的取值范圍是(  )
A.-1≤m<2B.-2
5
≤m≤2
5
C.-2≤m<2或m=5D.-2
5
≤m≤2
5
或m=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知點(diǎn)A是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點(diǎn),若點(diǎn)C(
3
2
3
2
)
在橢圓上,且滿足
OC
OA
=
3
2
.(其中O為坐標(biāo)原點(diǎn))
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l與橢圓交于兩點(diǎn)M,N,當(dāng)
OM
+
ON
=m
OC
,m∈(0,2)
時(shí),求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線與橢圓
x2
4
+y2=1
共焦點(diǎn),它們的離心率之和為
3
3
2
;
(1)求橢圓與雙曲線的離心率e1、e2;
(2)求雙曲線的標(biāo)準(zhǔn)方程與漸近線方程;
(3)已知直線l:y=
1
2
x+m
與橢圓有兩個(gè)交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓
x2
16
+
y2
12
=1,點(diǎn)P為其上一點(diǎn),F(xiàn)1、F2為橢圓的焦點(diǎn),Q為射線F1P延長(zhǎng)線上一點(diǎn),且|PQ|=|PF2|,設(shè)R為F2Q的中點(diǎn).
(1)當(dāng)P點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),求R形成的軌跡方程;
(2)設(shè)點(diǎn)R形成的曲線為C,直線l:y=k(x+4
2
)與曲線C相交于A、B兩點(diǎn),若∠AOB=90°時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,O為坐標(biāo)原點(diǎn),直線l在x軸和y軸上的截距分別是a和b(a>0,b≠0),且交拋物線y2=2px(p>0)于M(x1,y1),N(x2,y2)兩點(diǎn).
(1)寫出直線l的截距式方程;
(2)證明:
1
y1
+
1
y2
=
1
b

(3)當(dāng)a=2p時(shí),求∠MON的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案