如圖,等邊三角形ABC的中線AF與中位線DE相交于G,已知△A′ED是△ADE繞DE旋轉(zhuǎn)過(guò)程中的一個(gè)圖形,下列命題中,錯(cuò)誤的是(  )
A、動(dòng)點(diǎn)A′在平面ABC上的射影在線段AF上
B、恒有平面A′GF⊥平面ACDE
C、三棱錐′-EFD的體積有最大值
D、異面直線A′E與BD不可能垂直
考點(diǎn):異面直線及其所成的角
專題:空間位置關(guān)系與距離
分析:由斜線的射影定理可判斷A正確;由面面垂直的判定定理,可判斷B正確;由三棱錐的體積公式,可判斷C正確;由異面直線所成的角的概念可判斷D不正確.
解答: 解:∵A′D=A′E,△ABC是正三角形,
∴A′在平面ABC上的射影在線段AF上,故A正確;
由A知,平面A′GF一定過(guò)平面BCED的垂線,
∴恒有平面A′GF⊥平面BCED,故B正確;
三棱錐A′-FED的底面積是定值,體積由高即A′到底面的距離決定,
當(dāng)平面A′DE⊥平面BCED時(shí),三棱錐A′-FED的體積有最大值,故C正確;
當(dāng)(A′E)2+EF2=(A′F)2時(shí),面直線A′E與BD垂直,故④錯(cuò)誤.
故選:D.
點(diǎn)評(píng):本題考查了線面、面面垂直的判定定理、性質(zhì)定理的運(yùn)用,考查了空間線線、線面的位置關(guān)系及所成的角的概念,考查了空間想象能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知log3(2x-1)<1,則x的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,最小正周期是
π
2
的偶函數(shù)為( 。
A、y=tan2x
B、y=cos(4x+
π
2
C、y=2cos22x-1
D、y=cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線兩條漸近線的夾角為60°,該雙曲線的離心率為(  )
A、
3
2
B、
2
3
3
2
C、
3
或2
D、
2
3
3
或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

歸納推理是(  )
A、特殊到一般的推理
B、特殊到特殊的推理
C、一般到特殊的推理
D、一般到一般的推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=lgx+x-3的零點(diǎn)所在的區(qū)間是(  )
A、(1,2)
B、(3,4)
C、(2,3)
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(x-1)-k(x-1)+1,若函數(shù)f(x)沒(méi)有零點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,拋物線y2=2px上一點(diǎn)到焦點(diǎn)F的距離與到y(tǒng)軸的距離的差為1.
(1)求拋物線的方程;
(2)過(guò)F作直線交拋物線于A,B兩點(diǎn),且A,B關(guān)于x軸的對(duì)稱點(diǎn)分別為A′,B′,四邊形AA′BB′的面積為S,求
S
|AB|2
的最大值,并求出此時(shí)直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某人計(jì)劃間種植n棵樹,已知每棵樹是否成活互不影響,成活率為p(0<p<1),設(shè)ξ表示他所種植的樹中成活的棵數(shù),ξ的數(shù)學(xué)期望為Eξ,方差為Dξ.
(1)若n=1,求Dξ的最大值;
(2)已知Eξ=3,標(biāo)準(zhǔn)差σξ=
3
2
,求n,p的值并寫出ξ的分布列.

查看答案和解析>>

同步練習(xí)冊(cè)答案