【題目】已知拋物線,直線與拋物線交于,兩點(diǎn),分別過,作拋物線的切線,兩切線交于點(diǎn).
(1)若直線變動(dòng)時(shí),點(diǎn)始終在以為直徑的圓上,求動(dòng)點(diǎn)的軌跡方程;
(2)設(shè)圓,若直線與圓相切于點(diǎn)(點(diǎn)在線段上).是否存在點(diǎn)使得?若存在,求出點(diǎn)坐標(biāo),若不存在,說明理由.
【答案】(1)(2)存在;點(diǎn)
【解析】
(1)利用導(dǎo)數(shù)可求得切線的方程,進(jìn)而得到,由可求得,進(jìn)而得到軌跡方程;
(2)設(shè)直線方程為,與拋物線方程聯(lián)立,利用可求得;根據(jù)直線與圓相切可求得,進(jìn)而得到方程,確定點(diǎn)坐標(biāo).
(1)設(shè)點(diǎn),,,
由得:,,
切線方程為:,即;
切線方程為:,即;
,,兩式消去得:,
始終在以為直徑的圓上,,,,
點(diǎn)的軌跡方程為.
(2)由題意可知:直線斜率存在,設(shè)直線方程為:,
直線與圓相切,,即,
設(shè)點(diǎn),,
由得:,則,,
,,,解得:,
,直線方程為:,,
即存在點(diǎn),使得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2|x+1|+|x-2|.
(1)求f(x)的最小值m;
(2)若a,b,c均為正實(shí)數(shù),且滿足a+b+c=m,求證:++≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和滿足,數(shù)列滿足.
Ⅰ求數(shù)列和數(shù)列的通項(xiàng)公式;
Ⅱ令,若對(duì)于一切的正整數(shù)恒成立,求實(shí)數(shù)的取值范圍;
Ⅲ數(shù)列中是否存在,且 使,,成等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中),.
(1)若對(duì)定義域內(nèi)的任意實(shí)數(shù)x恒成立,求實(shí)數(shù)a的取值范圍;
(2)若有兩個(gè)極值點(diǎn),,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)離心率為 的橢圓 的左、右焦點(diǎn)為 , 點(diǎn)P是E上一點(diǎn), , 內(nèi)切圓的半徑為 .
(1)求E的方程;
(2)矩形ABCD的兩頂點(diǎn)C、D在直線上,A、B在橢圓E上,若矩形ABCD的周長(zhǎng)為 , 求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn)為,點(diǎn)為橢圓的左、右頂點(diǎn),點(diǎn)是橢圓上一點(diǎn),且直線的傾斜角為,,已知橢圓的離心率為.
(1)求橢圓的方程;
(2)設(shè)為橢圓上異于的兩點(diǎn),若直線的斜率等于直線斜率的倍,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】CPI是居民消費(fèi)價(jià)格指數(shù)(consumer price index)的簡(jiǎn)稱.居民消費(fèi)價(jià)格指數(shù)是一個(gè)反映居民家庭一般所購(gòu)買的消費(fèi)品價(jià)格水平變動(dòng)情況的宏觀經(jīng)濟(jì)指標(biāo).如圖是根據(jù)國(guó)家統(tǒng)計(jì)局發(fā)布的2017年6月—2018年6月我國(guó)CPI漲跌幅數(shù)據(jù)繪制的折線圖(注:2018年6月與2017年6月相比較,叫同比;2018年6月與2018年5月相比較,叫環(huán)比),根據(jù)該折線圖,則下列結(jié)論錯(cuò)誤的是( )
A.2017年8月與同年12月相比較,8月環(huán)比更大
B.2018年1月至6月各月與2017年同期相比較,CPI只漲不跌
C.2018年1月至2018年6月CPI有漲有跌
D.2018年3月以來,CPI在緩慢增長(zhǎng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),下列判斷正確的是( )
A. 有最大值和最小值
B. 的圖象的對(duì)稱中心為()
C. 在上存在單調(diào)遞減區(qū)間
D. 的圖象可由的圖象向左平移個(gè)單位而得
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下面左圖,在直角梯形中,,,,,,點(diǎn)在上,且,將沿折起,得到四棱錐(如下面右圖).
(1)求四棱錐的體積的最大值;
(2)在線段上是否存在點(diǎn),使得平面?若存在,求的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com