【題目】年,山東省高考將全面實行“”的模式(即:語文、數(shù)學、外語為必考科目,剩下的物理、化學、歷史、地理、生物、政治六科任選三科進行考試).為了了解學生對物理學科的喜好程度,某高中從高一年級學生中隨機抽取人做調(diào)查.統(tǒng)計顯示,男生喜歡物理的有人,不喜歡物理的有人;女生喜歡物理的有人,不喜歡物理的有.

1)據(jù)此資料判斷是否有的把握認為“喜歡物理與性別有關(guān)”;

2)為了了解學生對選科的認識,年級決定召開學生座談會.現(xiàn)從名男同學和名女同學(其中女喜歡物理)中,選取名男同學和名女同學參加座談會,記參加座談會的人中喜歡物理的人數(shù)為,求的分布列及期望.

,其中.

【答案】1)有的把握認為喜歡物理與性別有關(guān);(2)分布列見解析,.

【解析】

1)根據(jù)題目所給信息,列出列聯(lián)表,計算的觀測值,對照臨界值表可得出結(jié)論;

2)設參加座談會的人中喜歡物理的男同學有人,女同學有人,則,確定的所有取值為、、.根據(jù)計數(shù)原理計算出每個所對應的概率,列出分布列計算期望即可.

1)根據(jù)所給條件得列聯(lián)表如下:

合計

喜歡物理

不喜歡物理

合計

,

所以有的把握認為喜歡物理與性別有關(guān);

2)設參加座談會的人中喜歡物理的男同學有人,女同學有人,則

由題意可知,的所有可能取值為、、、

,

,

,

.

所以的分布列為:

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與橢圓交于不同的兩點.

1)若線段的中點為,求直線的方程;

2)若的斜率為,且過橢圓的左焦點的垂直平分線與軸交于點,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù),為直線的傾斜角).以原點為極點,軸的非負半軸為極軸建立極坐標系,并在兩個坐標系下取相同的長度單位.

1)當時,求直線的極坐標方程;

2)若曲線和直線交于,兩點,且,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,是邊的中點.平面平面,,.線段上的點滿足.

1)證明:

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求曲線處的切線方程;

2)若不等式對任意恒成立,求正整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我們把有相同數(shù)字相鄰的數(shù)叫“兄弟數(shù)”,現(xiàn)從由一個1,一個2,兩個3,兩個4這六個數(shù)字組成的所有不同的六位數(shù)中隨機抽取一個,則抽到“兄弟數(shù)”的概率為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在發(fā)生公共衛(wèi)生事件期間,有專業(yè)機構(gòu)認為該事件在一段時間內(nèi)沒有發(fā)生大規(guī)模群體感染的標志為連續(xù)10天,每天新增疑似病例不超過7”.過去10日,AB、CD四地新增疑似病例數(shù)據(jù)信息如下:

A地:中位數(shù)為2,極差為5; B地:總體平均數(shù)為2,眾數(shù)為2;

C地:總體平均數(shù)為1,總體方差大于0; D地:總體平均數(shù)為2,總體方差為3.

則以上四地中,一定符合沒有發(fā)生大規(guī)模群體感染標志的是_______(A、B、CD)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,討論函數(shù)的單調(diào)性;

(Ⅱ)若方程沒有實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知橢圓C(ab0)的離心率為.且經(jīng)過點(1,),A,B分別為橢圓C的左、右頂點,過左焦點F的直線l交橢圓CD,E兩點(其中Dx軸上方).

1)求橢圓C的標準方程;

2)若AEFBDF的面積之比為17,求直線l的方程.

查看答案和解析>>

同步練習冊答案