【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,記其質(zhì)量指標(biāo)值為M,當(dāng)M≥85時(shí),產(chǎn)品為一級品;當(dāng)75≤M<85時(shí),產(chǎn)品為二級品;當(dāng)70≤M<75時(shí),產(chǎn)品為三級品.現(xiàn)用兩種新配方(分別稱為A配方和B配方)做實(shí)驗(yàn),各生產(chǎn)了100件這種產(chǎn)品,并測量了每件產(chǎn)品的質(zhì)量指標(biāo)值,得到下面試驗(yàn)結(jié)果:

A配方的頻數(shù)分布表

B配方的頻數(shù)分布表

1)從A配方生產(chǎn)的產(chǎn)品中按等級分層抽樣抽取5件產(chǎn)品,再從這5件產(chǎn)品中任取3件,求恰好取到1件二級品的頻率;

2)若這種新產(chǎn)品的利潤率y與質(zhì)量指標(biāo)M滿足如下條件:其中t,請分別計(jì)算兩種配方生產(chǎn)的產(chǎn)品的平均利潤率,如果從長期來看,你認(rèn)為投資哪種配方的產(chǎn)品平均利潤率較大?

【答案】1;(2)投資B配方的產(chǎn)品平均利潤率較大

【解析】

1)本題為古典概率,計(jì)算從這5件產(chǎn)品中任取3件總的方法數(shù),恰好取到1件二級品的方法數(shù),即得解;

2)分別計(jì)算,作差法比較即可.

1)由題意知,按分層抽樣抽取的5件產(chǎn)品中有2件為二級品,記為a,b,有3件為一級品,記為x,y,z

從這5件產(chǎn)品中任取3件共有10種取法:

其中恰好取到1件二級品共有6種取法,所以恰好取到一件二級品的概率為:

2)由題意,A配方生產(chǎn)的產(chǎn)品平均利潤率

B配方生產(chǎn)的產(chǎn)品平均利潤率

所以

因?yàn)?/span>,所以

所以投資B配方的產(chǎn)品平均利潤率較大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解高一新生是否愿意參加軍訓(xùn),隨機(jī)調(diào)查了80名新生,得到如下2×2列聯(lián)表

愿意

不愿意

合計(jì)

x

5

M

y

z

40

合計(jì)

N

25

80

1)寫出表中x,y,zM,N的值,并判斷是否有99.9%的把握認(rèn)為愿意參加軍訓(xùn)與性別有關(guān);

2)在被調(diào)查的不愿意參加軍訓(xùn)的學(xué)生中,隨機(jī)抽出3人,記這3人中男生的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

參考公式:

附:

PK2k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.01

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),gx)=bx1),其中a≠0,b≠0

1)若ab,討論Fx)=fx)﹣gx)的單調(diào)區(qū)間;

2)已知函數(shù)fx)的曲線與函數(shù)gx)的曲線有兩個(gè)交點(diǎn),設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1x2,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù).

1)求證:當(dāng)時(shí),

2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年是中國成立70周年,也是全面建成小康社會的關(guān)鍵之年.為了迎祖國70周年生日,全民齊心奮力建設(shè)小康社會,某校特舉辦喜迎國慶,共建小康知識競賽活動.下面的莖葉圖是參賽兩組選手答題得分情況,則下列說法正確的是(

A.甲組選手得分的平均數(shù)小于乙組選手的平均數(shù)B.甲組選手得分的中位數(shù)大于乙組選手的中位數(shù)

C.甲組選手得分的中位數(shù)等于乙組選手的中位數(shù)D.甲組選手得分的方差大于乙組選手的的方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),其中.對一切恒成立,則①;②;③既不是奇函數(shù)也不是偶函數(shù);④的單調(diào)遞增區(qū)間是;⑤存在經(jīng)過點(diǎn)的直線與函數(shù)的圖像不相交.以上結(jié)論正確的是________________.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)分別是橢圓的左、右焦點(diǎn).

(1)若是該橢圓上的一個(gè)動點(diǎn),求的最大值和最小值;

(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某投資公司計(jì)劃投資、兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,產(chǎn)品的利潤與投資量x成正比例,其關(guān)系如圖1,產(chǎn)品的利潤與投資量x的算術(shù)平方根成正比例,其關(guān)系如圖2;(利潤與投資量單位:萬元)

1)分別將、兩產(chǎn)品的利潤表示為投資量的函數(shù)關(guān)系式;

2)該公司已有20萬元資金,并全部投入、兩種產(chǎn)品中,問:怎樣分配這20萬元投資,才能使公司獲得最大利潤?其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 滿足約束條件,若取得最大值的最優(yōu)解不唯一,則實(shí)數(shù)的值為__________

【答案】

【解析】由題可知若取得最大值的最優(yōu)解不唯一則必平行于可行域的某一邊界,如圖:要Z最大則直線與y軸的截距最大即可,當(dāng)a<0時(shí),則平行AC直線即可故a=-2,當(dāng)a>0時(shí),則直線平行AB即可,故a=1

點(diǎn)睛:線性規(guī)劃為常考題型,解決此題務(wù)必要理解最優(yōu)解個(gè)數(shù)為無數(shù)個(gè)時(shí)的條件是什么,然后根據(jù)幾何關(guān)系求解即可

型】填空
結(jié)束】
16

【題目】《數(shù)書九章》三斜求積術(shù):“以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪,減上,余四約一,為實(shí),一為從隅,開平方得積”.秦九韶把三角形的三條邊分別稱為小斜、中斜和大斜,“術(shù)”即方法.以, , , 分別表示三角形的面積,大斜,中斜,小斜; , 分別為對應(yīng)的大斜,中斜,小斜上的高;則 .若在 , ,根據(jù)上述公式,可以推出該三角形外接圓的半徑為__________

查看答案和解析>>

同步練習(xí)冊答案