【題目】已知橢圓+=1的左焦點(diǎn)為F,直線x-y-2=0,x-y+2=0與橢圓分別相交于A,B,C,D,則|AF|+|BF|+|CF|+|DF|=______.
【答案】12
【解析】
設(shè)橢圓的右焦點(diǎn)為F′,由題分析得到|AF|+|BF|+|CF|+|DF|=|AF|+|AF′|+|BF|+|BF′|,再利用橢圓的定義求解.
解:
設(shè)橢圓的右焦點(diǎn)為F′,由橢圓定義可知|AF|+|AF′|=|BF|+|BF′|=2a=6.
∵直線x-y-2=0和直線x-y+2=0關(guān)于原點(diǎn)對(duì)稱,且橢圓是中心對(duì)稱圖形,對(duì)稱中心為原點(diǎn),
∴|DF|=|AF′|,|CF|=|BF′|,
∴|AF|+|BF|+|CF|+|DF|=|AF|+|AF′|+|BF|+|BF′|=4a=12.
故答案為:12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角中,,,點(diǎn)在線段上.
(Ⅰ) 若,求的長(zhǎng);
(Ⅱ)若點(diǎn)在線段上,且,問(wèn):當(dāng)取何值時(shí),的面積最。坎⑶蟪雒娣e的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:①若,則;②的圖象關(guān)于點(diǎn)對(duì)稱;③函數(shù)在上單調(diào)遞增;④的圖象向右平移個(gè)單位長(zhǎng)度后所得圖象關(guān)于軸對(duì)稱.其中所有正確結(jié)論的編號(hào)是( )
A.①②④B.①②C.③④D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知曲線,將曲線上的點(diǎn)向左平移一個(gè)單位,然后縱坐標(biāo)不變,橫坐標(biāo)軸伸長(zhǎng)到原來(lái)的2倍,得到曲線,又已知直線(是參數(shù)),且直線與曲線交于兩點(diǎn).
(I)求曲線的直角坐標(biāo)方程,并說(shuō)明它是什么曲線;
(II)設(shè)定點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列命題的真假:
(1)是有理數(shù);(2);
(3)奇數(shù)的平方仍是奇數(shù);(4)兩個(gè)集合的交集還是一個(gè)集合;
(5)每一個(gè)素?cái)?shù)都是奇數(shù);(6)方程有實(shí)數(shù)根;
(7);(8)如果,那么.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語(yǔ)文、數(shù)學(xué)和英語(yǔ)是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目.若一個(gè)學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.
某學(xué)校為了解高一年級(jí)420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
選考方案待確定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 1 | 0 | 0 | 求的分布列及數(shù)學(xué)期望. |