【題目】已知曲線的極坐標(biāo)方程為,直線:,直線:.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.
(1)求直線,的直角坐標(biāo)方程以及曲線的參數(shù)方程;
(2)已知直線與曲線交于,兩點(diǎn),直線與曲線C交于,兩點(diǎn),求的面積.
【答案】(1)直線的直角坐標(biāo)方程為,的直角坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù));(2).
【解析】
(1)根據(jù)直線,的極坐標(biāo)方程可知直線,過(guò)極點(diǎn),可得直線,的直角坐標(biāo)方程.先把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,再化為參數(shù)方程;
(2)將直線,的極坐標(biāo)方程分別與曲線的極坐標(biāo)方程聯(lián)立,由極徑的幾何意義求出,再根據(jù)三角形的面積公式即可求值.
(1)依題意,直線的直角坐標(biāo)方程為,的直角坐標(biāo)方程為,
由,得,
,,,
,即,
所以曲線的參數(shù)方程為(為參數(shù)).
(2)由,得,
由,得,
又
所以的面積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知().
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),對(duì)任意的,,且,都有,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩工人在同樣的條件下生產(chǎn),日產(chǎn)量相等,每天出廢品的情況如下表:
則下列結(jié)論中正確的是 ( )
A. 甲生產(chǎn)的產(chǎn)品質(zhì)量比乙生產(chǎn)的產(chǎn)品質(zhì)量好一些
B. 乙生產(chǎn)的產(chǎn)品質(zhì)量比甲生產(chǎn)的產(chǎn)品質(zhì)量好一些
C. 兩人生產(chǎn)的產(chǎn)品質(zhì)量一樣好
D. 無(wú)法判斷誰(shuí)生產(chǎn)的產(chǎn)品質(zhì)量好一些
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P一ABCD中,AB=AD=2BC=2,BC∥AD,AB⊥AD,△PBD為正三角形.且PA=2.
(1)證明:平面PAB⊥平面PBC;
(2)若點(diǎn)P到底面ABCD的距離為2,E是線段PD上一點(diǎn),且PB∥平面ACE,求四面體A-CDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某圓柱的高為2,底面周長(zhǎng)為16,其三視圖如圖所示,圓柱表面上的點(diǎn)在正視圖上的對(duì)應(yīng)點(diǎn)為,圓柱表面上的點(diǎn)在左視圖上的對(duì)應(yīng)點(diǎn)為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長(zhǎng)度為( )
A. B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從六個(gè)數(shù)字中任取兩個(gè)奇數(shù)和兩個(gè)偶數(shù),組成沒(méi)有重復(fù)數(shù)字的四位奇數(shù),有__________個(gè)這樣的四位奇數(shù)(用數(shù)字填寫(xiě)答案).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓錐的頂點(diǎn)為A,高和底面的半徑相等,BE是底面圓的一條直徑,點(diǎn)D為底面圓周上的一點(diǎn),且∠ABD=60°,則異面直線AB與DE所成角的正弦值為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com