16、已知數(shù)列{an}中,Sn是其前n項(xiàng)和,若a1=1,a2=2,anan+1an+2=an+an+1+an+2且an+1an+2≠1,則S2011=
4021
分析:先由遞推關(guān)系式以及前兩項(xiàng)一步步代入,求出數(shù)列的前幾項(xiàng)可以得出數(shù)列{an}是周期為3的一個(gè)循環(huán)數(shù)列,即可求出S2011的值.
解答:解:因?yàn)閍1=1,a2=2,anan+1an+2=an+an+1+an+2且,
所以有a1a2a3=a1+a2+a3?a3=3;
a2•a3•a4=a2+a3+a4?a4=1;
a3•a4•a5=a3+a4+a5?a5=2;
a4•a5•a6=a4+a5+a6?a6=3;

故數(shù)列{an}是周期為3的一個(gè)循環(huán)數(shù)列.
所以S2011=a1+a2+a3+…+a2011
=670×(a1+a2+a3)+a3×670+1
=670×(1+2+3)+1
=4021.
故答案為:4021.
點(diǎn)評(píng):本題主要考查數(shù)列的遞推關(guān)系式的應(yīng)用以及求數(shù)列的和,考查計(jì)算能力,屬于基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項(xiàng)公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
2n
an
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=
1
2
,Sn
為數(shù)列的前n項(xiàng)和,且Sn
1
an
的一個(gè)等比中項(xiàng)為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項(xiàng)公式為(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習(xí)冊(cè)答案