【題目】已知的頂點(diǎn),邊上的高所在的直線的方程為,為中點(diǎn),且所在的直線的方程為.
(1)求邊所在的直線方程;
(2)求邊所在的直線方程.
【答案】(1);(2).
【解析】
(1)設(shè)點(diǎn)的坐標(biāo)為,由直線與直線垂直,得出直線的斜率為,再由點(diǎn)在直線上,可得出關(guān)于、的方程組,解出這兩個(gè)未知數(shù)的值,即可求出邊所在的直線方程;
(2)設(shè)點(diǎn)的坐標(biāo)為,由的中點(diǎn)在直線上以及點(diǎn)在直線上建立方程組,求出點(diǎn)的坐標(biāo),由此可求出邊所在的直線方程.
(1)設(shè)點(diǎn)的坐標(biāo)為,直線的斜率為,
由于直線與直線垂直,則直線的斜率為,整理得,
又因?yàn)辄c(diǎn)在直線,則,
所以,解得,即點(diǎn)的坐標(biāo)為,
因此,邊所在的直線方程為,即;
(2)設(shè)點(diǎn)的坐標(biāo)為,由的中點(diǎn)在直線上,
所以,整理得,
又因?yàn)辄c(diǎn)在直線上,,
所以,解得,即點(diǎn).
則直線的斜率為,
因此,邊所在直線的方程為,即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某班學(xué)生喜好體育運(yùn)動是否與性別有關(guān),對本班60人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜好體育運(yùn)動 | 不喜好體育運(yùn)動 | 合計(jì) | |
男生 | 5 | ||
女生 | 10 | ||
合計(jì) | 60 |
已知按喜好體育運(yùn)動與否,采用分層抽樣法抽取容量為12的樣本,則抽到喜好體育運(yùn)動的人數(shù)為7.
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為喜好體育運(yùn)動與性別有關(guān)?說明你的理由;
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;
(2)若恒成立,求的取值范圍;
(3)已知,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有四張卡片,分別寫有“瓷、都、文、明”四個(gè)字,有放回地從中任取一張卡片,將三次抽取后“瓷”“都”兩個(gè)字都取到記為事件,用隨機(jī)模擬的方法估計(jì)事件發(fā)生的概率.利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,2,3四個(gè)隨機(jī)數(shù),分別代表“瓷、都、文、明”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):
232 | 321 | 230 | 023 | 123 | 021 | 132 | 220 | 001 |
231 | 130 | 133 | 231 | 031 | 320 | 122 | 103 | 233 |
由此可以估計(jì)事件發(fā)生的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖甲是某商店2018年(按360天計(jì)算)的日盈利額(單位:萬元)的統(tǒng)計(jì)圖.
(1)請計(jì)算出該商店2018年日盈利額的平均值(精確到0.1,單位:萬元):
(2)為了刺激消費(fèi)者,該商店于2019年1月舉行有獎促銷活動,顧客凡購買一定金額的高品后均可參加抽獎.隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該商店對前5天抽獎活動的人數(shù)進(jìn)行統(tǒng)計(jì)如下表:(表示第天參加抽獎活動的人數(shù))
1 | 2 | 3 | 4 | 5 | |
50 | 60 | 70 | 80 | 100 |
經(jīng)過進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.
(。└鶕(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程:
(ⅱ)該商店采取轉(zhuǎn)盤方式進(jìn)行抽獎(如圖乙),其中轉(zhuǎn)盤是個(gè)八等分的圓.每位顧客最多兩次抽獎機(jī)會,若第一次抽到獎,則抽獎終止,若第一次未抽到獎,則再提供一次抽獎機(jī)會.抽到一等獎的獎品價(jià)值128元,抽到二等獎的獎品價(jià)值32元.若該商店此次抽獎活動持續(xù)7天,試估計(jì)該商店在此次抽獎活動結(jié)束時(shí)共送出價(jià)值為多少元的獎品(精確到0.1,單位:萬元)?
(3)用(1)中的2018年日盈利額的平均值去估計(jì)當(dāng)月(共31天)每天的日盈利額.若商店每天的固定支出約為1000元,促銷活動日的日盈利額比平常增加20%,則該商店當(dāng)月的純利潤約為多少萬元?(精確到0.1,純利潤=盈利額-固定支出-抽獎總獎金數(shù))
參考公式及數(shù)據(jù):,,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,對任意,點(diǎn)都在函數(shù) 的圖象上.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列,求數(shù)列的前項(xiàng)和;
(3)已知數(shù)列滿足,若對任意,存在使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,過的直線交橢圓、兩點(diǎn),若的最大值為5,則b的值為( )
A. 1 B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:①等比數(shù)列1,,,,…()的前項(xiàng)和為;②等差數(shù)列中,若,,則該數(shù)列的前13項(xiàng)或14項(xiàng)之和最大;③若等差數(shù)列公差為,則其前項(xiàng)和;④若等比數(shù)列單調(diào)遞增的充要條件是首項(xiàng),且公比;⑤若數(shù)列滿足,,則.其中正確的是______(把你認(rèn)為正確的命題序號都填上).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com