【題目】直三棱柱中,底面ABC為等腰直角三角形,,,,M是側(cè)棱上一點,設,用空間向量知識解答下列問題.

1,證明:;

2,求直線與平面ABM所成的角的正弦值.

【答案】(1)見解析;(2)

【解析】

1A為原點,ABx軸,ACy軸,z軸,建立空間直角坐標系,利用向量的數(shù)量積為0即可證明C. 2時,求平面ABM的法向量,利用向量法求出直線與平面ABM所成的角的正弦值.

證明:1直三棱柱中,底面ABC為等腰直角三角形,

,,,

M是側(cè)棱上一點,設,,

A為原點,ABx軸,ACy軸,z軸,建立空間直角坐標系,

0,2,,0,2,,

2,,2,

,C.

2時,2,,0,

0,2,

設平面ABM的法向量y,

,取,得1,,

設直線與平面ABM所成的角為,

直線與平面ABM所成的角的正弦值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知:中,頂點,邊AB上的中線CD所在直線的方程是,邊AC上的高BE所在直線的方程是

求點B、C的坐標;

的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列滿足an=2an-1+2n+1(n∈N*,n≥2), .

(1)求的值;

(2)是否存在一個實數(shù)t,使得 (n∈N*),且數(shù)列{}為等差數(shù)列?若存在,求出實數(shù)t;若不存在,請說明理由;

(3)求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

Ⅰ)當,求曲線在點處的切線方程;

Ⅱ)求函數(shù)的單調(diào)區(qū)間;

Ⅲ)已知函數(shù)處取得極小值,不等式的解集為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選擇適當?shù)淖C明方法證明下列問題

(1)設是公比為的等比數(shù)列且,證明數(shù)列不是等比數(shù)列.

(2)設為虛數(shù)單位,為正整數(shù),,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=ax2-a-lnx,其中a ∈R.

(I)討論f(x)的單調(diào)性

(II)確定a的所有可能取值,使得在區(qū)間(1,+∞)內(nèi)恒成立(e=2.718…為自然對數(shù)的底數(shù))。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,一智能掃地機器人在處發(fā)現(xiàn)位于它正西方向的處和北偏東30°方向上的處分別有需要清掃的垃圾,紅外線感應測量發(fā)現(xiàn)機器人到的距離比到的距離少0.4米,于是選擇沿路線清掃,已知智能掃地機器人的直線行走速度為0.2,忽略機器人吸入垃圾及在處旋轉(zhuǎn)所用時間,10秒鐘完成了清掃任務.

1、兩處垃圾的距離是多少?

2)智能掃地機器人此次清掃行走路線的夾角的正弦值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標方程;

( Ⅱ ) 設直線軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.

【答案】(1);.

(2).

【解析】試題分析】(I)利用圓心和半徑,寫出圓的參數(shù)方程,將圓的極坐標方程展開后化簡得直角坐標方程.(II)求得兩點的坐標, 設點,代入向量,利用三角函數(shù)的值域來求得取值范圍.

試題解析】

(Ⅰ)圓的參數(shù)方程為為參數(shù)).

直線的直角坐標方程為.

(Ⅱ)由直線的方程可得點,點.

設點,則 .

.

由(Ⅰ)知,則 .

因為,所以.

型】解答
結(jié)束】
23

【題目】選修4-5:不等式選講

已知函數(shù), .

(Ⅰ)若對于任意, 都滿足,求的值;

(Ⅱ)若存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三課外興趣小組為了解高三同學高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學生進行問卷調(diào)查,情況如下表:

打算觀看

不打算觀看

女生

20

b

男生

c

25

1)求出表中數(shù)據(jù)bc;

2)判斷是否有99%的把握認為觀看2018年足球世界杯比賽與性別有關(guān);

3)為了計算10人中選出9人參加比賽的情況有多少種,我們可以發(fā)現(xiàn)它與10人中選出1人不參加比賽的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.

P(K2≥k0)

0.10

0.05

0.025

0.01

0.005

K0

2.706

3.841

5.024

6.635

7.879

附:

查看答案和解析>>

同步練習冊答案