【題目】已知集合A={x|(x+3)(x﹣6)≥0},B={x| <0}.
(1)求A∩RB;
(2)已知E={x|2a<x<a+1}(a∈R),若EB,求實數(shù)a的取值范圍.
【答案】
(1)解:因為集合A={x|(x+3)(x﹣6)≥0}={x|x≤﹣3或x≥6},
B={x| <0}={x|(x+2)(x﹣14)<0}={x|﹣2<x<14};
RB={x|x≤﹣2或x≥14},
所以A∩RB={x|x≤﹣3或x≥14}
(2)解:因為E={x|2a<x<a+1}(a∈R),且EB,
所以分兩種情況:
當(dāng)E=時,2a≥a+1解得a≥1;
當(dāng)E≠時,則2a<a+1且滿足 解得﹣1≤a<1;
綜上所述:實數(shù)a的取值范圍是a≥﹣1
【解析】(1)化簡集合A、B,求出RB與A∩RB即可;(2)由子集的定義,分E=和E≠時,求出實數(shù)a的取值范圍即可.
【考點精析】掌握交、并、補(bǔ)集的混合運算是解答本題的根本,需要知道求集合的并、交、補(bǔ)是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的程序框圖運行程序后,輸出的結(jié)果是31,則判斷框中的整數(shù)H=( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義域為(0,+∞)的單調(diào)函數(shù),若對任意的x∈(0,+∞),都有f[f(x)﹣ ]=2,則f(2016)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=log (﹣3+4x﹣x2)的單調(diào)遞增區(qū)間是( )
A.(﹣∞,2)
B.(2,+∞)
C.(1,2)
D.(2,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解心肺疾病是否與性別有關(guān),在市第一人民醫(yī)院隨機(jī)對入院50人進(jìn)行了問卷調(diào)查,得到如下的列聯(lián)表:
患心肺疾病 | 不患心肺疾病 | 合計 | |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
(1)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;
(2)已知在患心肺疾病的10位女性中,有3位又患有胃病,現(xiàn)在從患心肺疾病的10位女性中,選出3位進(jìn)行其他方面的排查,其中患胃病的人數(shù)為,求的分布列、數(shù)學(xué)期望.
參考公式: ,其中.
下面的臨界值僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)[x]表示不超過x的最大整數(shù),如[1]=1,[0.5]=0,已知函數(shù)f(x)= ﹣k(x>0),若方程f(x)=0有且僅有3個實根,則實數(shù)k的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ex(ax﹣1),g(x)=a(x﹣1),a∈R.
(1)討論f(x)的單調(diào)性;
(2)若有且僅有兩個整數(shù)xi(i=1,2),使得f(xi)<g(xi)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(為自然對數(shù)的底數(shù)),, .
(1)若是的極值點,且直線分別與函數(shù)和的圖象交于,求兩點間的最短距離;
(2)若時,函數(shù)的圖象恒在的圖象上方,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com