(2012•鹽城三模)在平面直角坐標系xOy中,已知點A(0,2),直線l:x+y-4=0.點B(x,y)是圓C:x2+y2-2x-1=0的動點,AD⊥l,BE⊥l,垂足分別為D、E,則線段DE的最大值是
5
2
2
5
2
2
分析:線段DE的最大值等于圓心(1,0)到直線AD:x-y+2=0的距離加半徑,由此可得結論.
解答:解:圓C:x2+y2-2x-1=0的圓心坐標為(1,0),半徑為
2

根據(jù)題意,線段DE的最大值等于圓心(1,0)到直線AD:x-y+2=0的距離加半徑,
∵圓心(1,0)到直線AD:x-y+2=0的距離為
|1+2|
2
=
3
2
2

∴線段DE的最大值為
5
2
2

故答案為:
5
2
2
點評:本題考查直線與圓的方程的應用,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•鹽城三模)一個袋中裝有大小和質(zhì)地都相同的10個球,其中黑球4個,白球5個,紅球1個.
(1)從袋中任意摸出3個球,記得到白球的個數(shù)為X,求隨機變量X的概率分布和數(shù)學期望E(X);
(2)每次從袋中隨機地摸出一球,記下顏色后放回.求3次摸球后,摸到黑球的次數(shù)大于摸到白球的次數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•鹽城三模)已知正△ABC的邊長為1,
CP
=7
CA
+3
CB
,則
CP
AB
=
-2
-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•鹽城三模)在平面直角坐標系xOy中,過點A(-2,-1)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F,短軸端點為B1、B2
FB1
FB2
=2b2

(1)求a、b的值;
(2)過點A的直線l與橢圓C的另一交點為Q,與y軸的交點為R.過原點O且平行于l的直線與橢圓的一個交點為P.若AQ•AR=3OP2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•鹽城三模)選修4-1:幾何證明選講:
如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P,E為⊙O上一點,
AE
=
AC
,DE交AB于點F.求證:PF•PO=PA•PB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•鹽城三模)選修4-5:不等式選講:
解不等式:|x-1|>
2x

查看答案和解析>>

同步練習冊答案