(12分)如圖①,在等腰梯形中,已知均為梯形的高,且。現(xiàn)沿折起,使點重合為一點,如圖②所示。又點為線段的中點,點在線段上,且。

(1)求線段的長;

(2)求二面角的大小。

(Ⅰ)    (Ⅱ)  


解析:

:(1)由題意得正

(2)作

所以二面角的大小為

坐標法(略)以N為原點,NA、NP、NZ為X、Y、Z軸

建立如圖所示的直角坐標系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰梯形中,AB∥CD,AD=12 cm,AC交梯形中位線EG于點F,EF=4cm,
FG=10cm.求此梯形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆河南省方城一高高三第一次調研(月考)考試文科數(shù)學試卷(解析版) 題型:解答題

如圖,在等腰梯形中,是梯形的高,,,現(xiàn)將梯形沿折起,使,且,得一簡單組合體如圖所示,已知分別為的中點.

(1)求證:平面;

(2)求證:平面.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆廣東省高二下學期期末考試理科數(shù)學試卷(解析版) 題型:解答題

如圖1,在等腰梯形CDEF中,CB、DA是梯形的高,,現(xiàn)將梯形沿CB、DA折起,使,得一簡單組合體如圖2示,已知分別為的中點.

   

圖1                              圖2

(1)求證:平面;

(2)求證: ;

(3)當多長時,平面與平面所成的銳二面角為

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省揭陽市高三3月第一次高考模擬理科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)

如圖1,在等腰梯形CDEF中,CB、DA是梯形的高,,現(xiàn)將梯形沿CB、DA折起,使,得一簡單組合體如圖2示,已知分別為的中點.

圖1                                圖2

(1)求證:平面;

(2)求證:

(3)當多長時,平面與平面所成的銳二面角為?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省泉州市高三畢業(yè)班質量檢查理科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分13分)

如圖1,在等腰梯形中,,,上一點, ,且.將梯形沿折成直二面角,如圖2所示.

(Ⅰ)求證:平面平面

(Ⅱ)設點關于點的對稱點為,點所在平面內,且直線與平面所成的角為,試求出點到點的最短距離.

 

查看答案和解析>>

同步練習冊答案