如圖所示,在四棱錐P-ABCD中,底面ABCD是矩形,且PA⊥平面ABCD,PA=5,AB=4,AD=3,求直線PC與平面ABCD所成的角.
考點(diǎn):直線與平面所成的角
專題:計(jì)算題,空間位置關(guān)系與距離,空間角
分析:連接AC,由于PA⊥平面ABCD,則∠PCA即為直線PC與平面ABCD所成的角,通過解直角三角形PAC,即可得到所求值.
解答: 解:連接AC,由于PA⊥平面ABCD,
則∠PCA即為直線PC與平面ABCD所成的角,
在矩形ABCD中,AB=4,BC=3,則AC=
32+42
=5.
在直角△PAC中,PA=AC=5,則∠PCA=45°,
則有直線PC與平面ABCD所成的角為45°.
點(diǎn)評:本題考查空間直線和平面所成的角的求法,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果復(fù)數(shù)z=i(-1+i),則( 。
A、|z|=2
B、z的實(shí)部為1
C、z的共軛復(fù)數(shù)為1+i
D、z的虛部為-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1的右焦點(diǎn)F2作實(shí)軸的垂線,交雙曲線于A、B兩點(diǎn).
(1)求線段AB的長;
(2)若△AF1F2為等腰直角三角形,求雙曲線的離心率(F1為左焦點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的俯視圖是如圖所示的矩形,正視圖(或稱主視圖)是一個底邊長為10、高為5的等腰三角形,側(cè)視圖(或稱左視圖)是一個底邊長為8、高為5的等腰三角形,求該幾何體的表面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log2x,x>0
3x,x≤0
則方程f(x)=1解的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,3anan-1+an-an-1=0(n≥2),數(shù)列{bn}滿足bn=an•an+1,Tn為數(shù)列{bn}的前n項(xiàng)和.
(1)證明:數(shù)列{
1
an
}
是等差數(shù)列;
(2)若對任意的n∈N*,不等式λTn<n+12恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知an+1+an=6n+3,求數(shù)列an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(π-α)=-
5
13
,且α是第四象限角,求sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是首項(xiàng)為1的遞增等差數(shù)列且a22=S3
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=
2
anan+1
,Tn為數(shù)列{bn}的前n項(xiàng)和,若對任意的n∈N*,不等式λTn<n+8×(-1)n恒成立,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案