【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,E,F(xiàn)是線段B1D上的兩個(gè)動(dòng)點(diǎn),且EF= ,則下列結(jié)論錯(cuò)誤的是(
A.AC⊥BF
B.直線AE,BF所成的角為定值
C.EF∥平面ABC
D.三棱錐A﹣BEF的體積為定值

【答案】B
【解析】解:∵在正方體中,AC⊥BD,∴AC⊥平面B1D1DB,又BE平面BB1D1D,∴AC⊥BE,故A正確; ∵當(dāng)點(diǎn)E在D1處,F(xiàn)為D1B1的中點(diǎn)時(shí),異面直線AE,BF所成的角是∠OEB,當(dāng)E在上底面的中心時(shí),F(xiàn)在C1的位置,異面直線AE,BF所成的角是∠OE1B,顯然兩個(gè)角不相等,B不正確;
∵平面ABCD∥平面A1B1C1D1 , EF平面A1B1C1D1 , ∴EF∥平面ABCD,故C正確;
∵由于點(diǎn)B到直線B1D1的距離不變,故△BEF的面積為定值.又點(diǎn)A到平面BEF的距離為 ,故VABEF為定值.D正確;
故選B.

通過直線AC垂直平面平面BB1D1D,判斷A是正確的;通過直線EF垂直于直線AB1 , AD1 , 判斷A1C⊥平面AEF是正確的;計(jì)算三角形BEF 的面積和A到平面BEF的距離是定值,說明C是正確的;只需找出兩個(gè)特殊位置,即可判斷D是不正確的;綜合可得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)= 是奇函數(shù),f(x)=log4(4x+1)﹣mx是偶函數(shù).
(1)求m+n的值;
(2)設(shè)h(x)=f(x)+ x,若g(x)>h[log4(2a+1)]對(duì)任意x≥1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的長(zhǎng)軸是短軸的兩倍,點(diǎn)P( , )在橢圓上,不過原點(diǎn)的直線l與橢圓相交于A、B兩點(diǎn),設(shè)直線OA、l、OB的斜率分別為k1、k、k2 , 且k1、k、k2恰好構(gòu)成等比數(shù)列,記△AOB的面積為S.
(1)求橢圓C的方程;
(2)試判斷|OA|2+|OB|2是否為定值?若是,求出這個(gè)值;若不是,請(qǐng)說明理由?
(3)求△AOB面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為1的菱形,∠BAD=60°,側(cè)棱PA⊥底面ABCD,E、F分別是PA、PC的中點(diǎn).
(Ⅰ)證明:PA∥平面FBD;
(Ⅱ)若PA=1,在棱PC上是否存在一點(diǎn)M使得二面角E﹣BD﹣M的大小為60°.若存在,求出PM的長(zhǎng),不存在請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四面體的六條棱中,有五條棱長(zhǎng)都等于a,則該四面體的體積的最大值為(
A. ?a3
B. ?a3
C. ?a3
D. ?a3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)簡(jiǎn)單幾何體的三視圖如圖所示,其中正視圖是一個(gè)正三角形,俯視圖是等腰直角三角形,則該幾何體的體積為 , 表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=x2+2(a﹣1)x+2在區(qū)間[﹣1,2]上單調(diào),則實(shí)數(shù)a的取值范圍為(
A.[2,+∞)
B.(﹣∞,﹣1]
C.(﹣∞,﹣1]∪[2,+∞)
D.(﹣∞,﹣1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓心在直線x﹣2y=0上的圓C與y軸的正半軸相切,圓C截x軸所得弦的長(zhǎng)為2 ,求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y= +lg(﹣x2+4x﹣3)的定義域?yàn)镸,
(1)求M;
(2)當(dāng)x∈M時(shí),求函數(shù)f(x)=a2x+2+34x(a<﹣3)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案