設(shè)P(x,y)是曲線C:
x=-2+cosθ
y=sinθ
為參數(shù),0≤θ<2π)上任意一點(diǎn),則
y
x
的取值范圍是(  )
A.[-
3
,
3
]
B.(-∞,-
3
]∪[
3
,+∞)
C.[-
3
3
3
3
]
D.(-∞,-
3
3
]∪[
3
3
,+∞)
曲線C:
x=-2+cosθ
y=sinθ
為參數(shù),0≤θ<2π)的普通方程為:(x+2)2+y2=1,
P(x,y)是曲線C:(x+2)2+y2=1上任意一點(diǎn),則
y
x
的幾何意義就是圓上的點(diǎn)與坐標(biāo)原點(diǎn)連線的斜率,
如圖:
y
x
∈[-
3
3
,
3
3
]

故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓M:x2+y2+2x-4y+3=0,若圓M的切線過點(diǎn)(0,1),求此切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在圓x2+y2-2x-6y=0內(nèi),過點(diǎn)E(0,1)的最短弦AB,則AB=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)圓(x-2)2+(y-2)2=4的切線l與兩坐標(biāo)軸交于點(diǎn)A(a,0),B(0,b),ab≠0.
(1)證明:(a-4)(b-4)=8;
(2)若a>4,b>4,求△AOB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

圓C:(x-1)2+(y-2)2=25內(nèi)有一點(diǎn)P(3,1),l為過點(diǎn)P且傾斜角為α的直線.
(1)若α=
4
,求直線l與圓C相交弦的弦長;
(2)求直線l被圓C截得的弦長度最短時(shí),直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線y=1+
4-x2
(x∈[-2,2])
與直線y=k(x-2)+4兩個(gè)公共點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是(  )
A.(0,
5
12
)
B.(
1
3
3
4
)
C.(
5
12
,+∞)
D.(
5
12
,
3
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線l將圓:x2+y2-2x-4y=0平分,且不過第四象限,那么l的斜率的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x-4,設(shè)圓C的半徑為1,圓心C在直線l上.
(1)若圓心C也在直線y=x-1上,過點(diǎn)A作圓C的切線,求切線的方程;
(2)當(dāng)圓心C在直線l上移動(dòng)時(shí),求點(diǎn)A到圓C上的點(diǎn)的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線3x+4y-4=0與圓(x-2)2+(y+3)2=9交于E、F兩點(diǎn),則△EOF(O是原點(diǎn))的面積為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案