【題目】已知橢圓C1: + =1(b>0)的左、右焦點(diǎn)分別為F1、F2 , 點(diǎn)F2也為拋物線C2:y2=8x的焦點(diǎn),過(guò)點(diǎn)F2的直線l交拋物線C2于A,B兩點(diǎn).
(Ⅰ)若點(diǎn)P(8,0)滿(mǎn)足|PA|=|PB|,求直線l的方程;
(Ⅱ)T為直線x=﹣3上任意一點(diǎn),過(guò)點(diǎn)F1作TF1的垂線交橢圓C1于M,N兩點(diǎn),求 的最小值.
【答案】解:(Ⅰ)由拋物線 得F2(2,0),
當(dāng)直線l斜率不存在,即l:x=2時(shí),滿(mǎn)足題意.
當(dāng)直線l斜率存在,設(shè)l:y=k(x﹣2)(k≠0),A(x1,y1),B(x2,y2),
由 得k2x2﹣(4k2+8)x+4k2=0,
∴ .
設(shè)AB的中點(diǎn)為G,則 ,
∵|PA|=|PB|,∴PG⊥l,kPGk=﹣1,
∴ ,解得 ,則 ,
∴直線l的方程為 或x=2.
(Ⅱ)∵F2(2,0),∴ ,
設(shè)T點(diǎn)的坐標(biāo)為(﹣3,m),
則直線TF1的斜率 ,
當(dāng)m≠0時(shí),直線MN的斜率 ,直線MN的方程是x=my﹣2,
當(dāng)m=0時(shí),直線MN的方程是x=﹣2,也符合x(chóng)=my﹣2的形式.
∴直線MN的方程是x=my﹣2.
設(shè)M(x3,y3),N(x4,y4),則 ,得(m2+3)y2﹣4my﹣2=0,
∴ ,
, = ,
∴ ,
當(dāng)且僅當(dāng) ,即m=±1時(shí),等號(hào)成立,此時(shí) 取得最小值 .
【解析】(Ⅰ)由拋物線 得F2(2,0),當(dāng)直線l斜率不存在,即l:x=2時(shí),滿(mǎn)足題意.當(dāng)直線l斜率存在,設(shè)l:y=k(x﹣2)(k≠0),A(x1,y1),B(x2,y2),與拋物線方程聯(lián)立可得k2x2﹣(4k2+8)x+4k2=0,利用根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)公式可得AB的中點(diǎn) ,由|PA|=|PB|,可得PG⊥l,kPGk=﹣1,解得k即可得出.(Ⅱ)F2(2,0),可得橢圓C1的方程,設(shè)T點(diǎn)的坐標(biāo)為(﹣3,m),則直線TF1的斜率 =﹣m.當(dāng)m≠0時(shí),直線MN的斜率 ,直線MN的方程是x=my﹣2,
當(dāng)m=0時(shí),上述方程.設(shè)M(x3,y3),N(x4,y4),與橢圓的方程聯(lián)立,利用根與系數(shù)的關(guān)系、兩點(diǎn)之間的距離公式及其基本不等式的性質(zhì)即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=mln(x+1)﹣nx在點(diǎn)(1,f(1))處的切線與y軸垂直,且 ,其中 m,n∈R.
(Ⅰ)求m,n的值,并求出f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)g(x)=﹣x2+2x,確定非負(fù)實(shí)數(shù)a的取值范圍,使不等式f(x)+x≥ag(x)在[0,+∞)上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某網(wǎng)絡(luò)營(yíng)銷(xiāo)部門(mén)為了統(tǒng)計(jì)某市網(wǎng)友2015年11月11日在某網(wǎng)店的網(wǎng)購(gòu)情況,隨機(jī)抽查了該市100名網(wǎng)友的網(wǎng)購(gòu)金額情況,得到如圖頻率分布直方圖.
(1)估計(jì)直方圖中網(wǎng)購(gòu)金額的中位數(shù);
(2)若規(guī)定網(wǎng)購(gòu)金額超過(guò)15千元的顧客定義為“網(wǎng)購(gòu)達(dá)人”,網(wǎng)購(gòu)金額不超過(guò)15千元的顧客定義為“非網(wǎng)購(gòu)達(dá)人”;若以該網(wǎng)店的頻率估計(jì)全市“非網(wǎng)購(gòu)達(dá)人”和“網(wǎng)購(gòu)達(dá)人”的概率,從全市任意選取3人,則3人中“非網(wǎng)購(gòu)達(dá)人”與“網(wǎng)購(gòu)達(dá)人”的人數(shù)之差的絕對(duì)值為X,求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x| <2x≤2},B={x|ln(x﹣ )≤0},則A∩(RB)=( )
A.
B.(﹣1, ]
C.[ ,1)
D.(﹣1,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正三角形ABC的邊長(zhǎng)為2,將它沿高AD翻折,使點(diǎn)B與點(diǎn)C間的距離為 ,此時(shí)四面體ABCD外接球表面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l在直角坐標(biāo)系xOy中的參數(shù)方程為 為參數(shù),θ為傾斜角),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,在極坐標(biāo)系中,曲線的方程為ρ﹣ρcos2θ﹣4cosθ=0.
(1)寫(xiě)出曲線C的直角坐標(biāo)方程;
(2)點(diǎn)Q(a,0),若直線l與曲線C交于A、B兩點(diǎn),求使 為定值的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy 中,F(xiàn),A,B 分別為橢圓 的右焦點(diǎn)、右頂點(diǎn)和上頂點(diǎn),若
(1)求a的值;
(2)過(guò)點(diǎn)P(0,2)作直線l 交橢圓于M,N 兩點(diǎn),過(guò)M 作平行于x 軸的直線交橢圓于另外一點(diǎn)Q,連接NQ ,求證:直線NQ 經(jīng)過(guò)一個(gè)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定:點(diǎn)P(x,y)按向量 平移后的點(diǎn)為Q(x+a,y+b).若函數(shù) 的圖象按向量 =(j,k)且|j| 平移后的圖象對(duì)應(yīng)的函數(shù)是 +1.
(1)試求向量 的坐標(biāo);
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知f(2A)+2cos(B+C)=1, ①求角A的大小;
②若a=6,求b+c的取值范圍.
另外:最后一小題也可用“余弦定理結(jié)合基本不等式”求解.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com