【題目】已知橢圓的兩焦點(diǎn)為, , 為橢圓上一點(diǎn),且到兩個(gè)焦點(diǎn)的距離之和為6.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若已知直線,當(dāng)為何值時(shí),直線與橢圓有公共點(diǎn)?
(3)若,求的面積.
【答案】(1);(2);(3)7.
【解析】試題分析:(1)由焦點(diǎn)坐標(biāo)得到c,由橢圓的定義求出a,進(jìn)而求出b的值,即可得出橢圓的方程;(2)聯(lián)立直線與橢圓方程,消去y, 直線與橢圓有公共點(diǎn)即所得一元二次方程有解,計(jì)算得出m的范圍;(3) 中, ,由勾股定理有,結(jié)合橢圓的定義代入化簡(jiǎn)可得,根據(jù)三角形的面積公式求解即可.
試題解析:
(1)∵橢圓的焦點(diǎn)是和,橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為6,
∴設(shè)所求的橢圓方程為,
∴依題意有, ,∴,
∴所求的橢圓方程為.
(2)由得,
由得,則,
∴當(dāng)時(shí),直線與橢圓有公共點(diǎn).
(3)∵點(diǎn)是橢圓上一點(diǎn),
∴由橢圓定義有,①
又中, ,
∴由勾股定理有,即,②
①2 ②,得,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求函數(shù)的極值;
(Ⅱ)若, , ,使得(),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的參數(shù)方程為(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)P的極坐標(biāo)為。
(Ⅰ)求直線l以及曲線C的極坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C交于A,B兩點(diǎn),求△PAB的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修44:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知直線l1: (, ),拋物線C: (t為參數(shù)).以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求直線l1 和拋物線C的極坐標(biāo)方程;
(Ⅱ)若直線l1 和拋物線C相交于點(diǎn)A(異于原點(diǎn)O),過原點(diǎn)作與l1垂直的直線l2,l2和拋物線C相交于點(diǎn)B(異于原點(diǎn)O),求△OAB的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣2x.
(1)求f(x)的解析式;
(2)作出函數(shù)f(x)的圖象,并指出其單調(diào)區(qū)間.(不需要嚴(yán)格證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形中, // , ⊥, ⊥, 點(diǎn)是 邊的中點(diǎn), 將△沿折起,使平面⊥平面,連接, , , 得到如圖所示的幾何體.
(Ⅰ)求證: ⊥平面;
(Ⅱ)若, ,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=e1+|x|﹣ ,則使得f(x)>f(2x﹣1)成立的x的取值范圍是( )
A.
B.
C.(﹣ , )
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組函數(shù)f(x)與g(x)的圖象相同的是( )
A.f(x)=x,g(x)=( )2
B.f(x)=x2 , g(x)=(x+1)2
C.f(x)=1,g(x)=x0
D.f(x)=|x|,g(x)=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com