【題目】給出下列五個(gè)命題:

①凈三種個(gè)體按的比例分層抽樣調(diào)查,如果抽取的個(gè)體為9個(gè),則樣本容易為30;②一組數(shù)據(jù)1、2、3、4、5的平均數(shù)、眾數(shù)、中位數(shù)相同;③甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5、6、9、10、5,那么這兩組數(shù)據(jù)中較穩(wěn)定的是甲;④已知具有線性相關(guān)關(guān)系的兩個(gè)變量滿足的回歸直線方程為.則每增加1個(gè)單位,平均減少2個(gè)單位;⑤統(tǒng)計(jì)的10個(gè)樣本數(shù)據(jù)為125,120,122,105,130,114,116,95,120,134,則樣本數(shù)據(jù)落在內(nèi)的頻率為0.4其中真命題為( )

A. ①②④B. ②④⑤C. ②③④D. ③④⑤

【答案】B

【解析】

由題意①中,根據(jù)分層抽樣的方法,即可求解是錯(cuò)誤的;②中,利用平均數(shù)、眾數(shù)、中位數(shù)的公式求解,即可得到判斷;③中,利用平均數(shù)和方差的公式,即可得到判斷;④中,根據(jù)回歸系數(shù)的含義,即可得到判斷;⑤中,根據(jù)古典概型的概率計(jì)算公式,即可求解,作出判斷.

,

①樣本容量為9÷=18,①是假命題;②數(shù)據(jù)1,2,3,3,4,5的平均數(shù)為×(1+2+3+3+4+5)=3,中位數(shù)為3,眾數(shù)為3,都相同,②是真命題;③=7,s×[(5-7)2+(6-7)2+(9-7)2+(10-7)2+(5-7)2]=×(4+1+4+9+4)=4.4,∴s>s,∴乙穩(wěn)定,③是假命題;④是真命題;⑤數(shù)據(jù)落在[114.5,124.5)內(nèi)的有120,122,116,120,共4個(gè),故其頻率為0.4,⑤是真命題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形ABCD中,AB=4,AD=2,E,F(xiàn),O分別為DC,AE,BC的中點(diǎn).以AE為折痕把△ADE折起,使點(diǎn)D到達(dá)點(diǎn)P的位置,且平面PAE⊥平面ABCE(如圖2).

(Ⅰ)求證:BC⊥平面POF;

(Ⅱ)求直線PA與平面PBC所成角的正弦值;

(Ⅲ)在線段PE上是否存在點(diǎn)M,使得AM∥平面PBC?若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)校組織的英語(yǔ)單詞背誦比賽中,5位評(píng)委對(duì)甲、乙兩名同學(xué)的評(píng)分如莖葉圖所示(分?jǐn)?shù)為整數(shù),且滿分100分),若甲同學(xué)所得評(píng)分的中位數(shù)為87,乙同學(xué)所得評(píng)分的唯一眾數(shù)為86,則甲同學(xué)所得評(píng)分的平均數(shù)不小于乙同學(xué)所得評(píng)分的平均數(shù)的概率為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型工廠有臺(tái)大型機(jī)器,在個(gè)月中,臺(tái)機(jī)器至多出現(xiàn)次故障,且每臺(tái)機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需名工人進(jìn)行維修.每臺(tái)機(jī)器出現(xiàn)故障的概率為.已知名工人每月只有維修臺(tái)機(jī)器的能力,每臺(tái)機(jī)器不出現(xiàn)故障或出現(xiàn)故障時(shí)有工人維修,就能使該廠獲得萬(wàn)元的利潤(rùn),否則將虧損萬(wàn)元.該工廠每月需支付給每名維修工人萬(wàn)元的工資.

(1)若每臺(tái)機(jī)器在當(dāng)月不出現(xiàn)故障或出現(xiàn)故障時(shí)有工人進(jìn)行維修,則稱(chēng)工廠能正常運(yùn)行.若該廠只有名維修工人,求工廠每月能正常運(yùn)行的概率;

(2)已知該廠現(xiàn)有名維修工人.

(。┯浽搹S每月獲利為萬(wàn)元,求的分布列與數(shù)學(xué)期望;

(ⅱ)以工廠每月獲利的數(shù)學(xué)期望為決策依據(jù),試問(wèn)該廠是否應(yīng)再招聘名維修工人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列有關(guān)命題的說(shuō)法錯(cuò)誤的是(

A.“p∨q”為假命題,則p,q均為假命題

B.“x=1”“x≥1”的充分不必要條件

C.“sinx=的必要不充分條件是“x=

D.若命題px0∈Rx02≥0,則命題¬px∈R,x20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,側(cè)棱底面,,點(diǎn)的中點(diǎn),作,交于點(diǎn).

1)求證:平面;

2)求證:;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的個(gè)數(shù)是(

①一組數(shù)據(jù)的標(biāo)準(zhǔn)差越大,則說(shuō)明這組數(shù)據(jù)越集中;

②曲線與曲線的焦距相等;

③在頻率分布直方圖中,估計(jì)的中位數(shù)左邊和右邊的直方圖的面積相等;

④已知橢圓,過(guò)點(diǎn)作直線,當(dāng)直線斜率為時(shí),M剛好是直線被橢圓截得的弦AB的中點(diǎn).

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究高中學(xué)生對(duì)鄉(xiāng)村音樂(lè)的態(tài)度(喜歡和不喜歡兩種態(tài)度)與性別的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=8.01,附表如下:

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

參照附表,得到的正確的結(jié)論是( 。

A. 有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂(lè)與性別有關(guān)”

B. 有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂(lè)與性別無(wú)關(guān)”

C. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂(lè)與性別有關(guān)”

D. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂(lè)與性別無(wú)關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),,為曲線上的一動(dòng)點(diǎn).

(I)求動(dòng)點(diǎn)對(duì)應(yīng)的參數(shù)從變動(dòng)到時(shí),線段所掃過(guò)的圖形面積;

(Ⅱ)若直線與曲線的另一個(gè)交點(diǎn)為,是否存在點(diǎn),使得為線段的中點(diǎn)?若存在,求出點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案