已知點(diǎn)H-30),點(diǎn)Py軸上,點(diǎn)Qx正半軸上,點(diǎn)M在直線PQ上,且滿足,

1)當(dāng)Py軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C;

2)過點(diǎn)T(-1,0)作直線l與軌跡C交于A、B兩點(diǎn),若在x軸上存在一點(diǎn)E(x0,0),使得DABE互是等邊三角形,求x0的值.

答案:
解析:

解:(1)設(shè)M(x,y),則由P(0,),Q(,0)

y2=4x,由于點(diǎn)Qx正半軸上∴ x>0

M的軌跡為以(0,0)為項(xiàng)點(diǎn),(1,0)為焦點(diǎn)的拋物線除去項(xiàng)點(diǎn)

(2)設(shè)直線ly=k(x+1),其中k¹0,代入y2=4x

k2x2+2(k2-2)x+k2=0①    D>0ÞkÎ(-1,0)∪(0,1)

設(shè)A(x1,y1),B(x2,y2),則x1x2為方程①的兩根,

x1+x2=,x1×x2=1,AB線段中點(diǎn)D

線段AB的垂直平分線方程,令y=0得

x0=+1,∴ 點(diǎn)E(+1,0)    ∵ DABE為正三角形,

∴ 點(diǎn)E到直線AB的距離為,而

    ∴ x0=


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)H(-3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸正半軸上,點(diǎn)M在直線PQ上,且滿足
HP
PM
=0
,
PM
=-
3
2
MQ

(1)當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C;
(2)過點(diǎn)(1,0)作直線L交軌跡C于A、B兩點(diǎn),已知
AF
=2
FB
,求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)H(-3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)M在直線PQ上,且滿足
HP
PM
=0
,
PM
=-
3
2
MQ

①當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C;
②過點(diǎn)R(2,1)作直線l與軌跡C交于A,B兩點(diǎn),使得R恰好為弦AB的中點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)H(-3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)M在直線PQ上,且滿足
HP
PM
=0
,
PM
=-
3
2
MQ

(1)當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C;
(2)過定點(diǎn)D(m,0)(m>0)作直線l交軌跡C于A、B兩點(diǎn),E是D點(diǎn)關(guān)于坐標(biāo)原點(diǎn)O的對稱點(diǎn),試問∠AED=∠BED嗎?若相等,請給出證明,若不相等,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•和平區(qū)三模)已知點(diǎn)H(-3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸正半軸上,點(diǎn)M在直線PQ上,且
HP
PM
=0
,又
PM
=-
3
2
MQ

(1)當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(2)若直線l:y=k(x-1)(k>2)與軌跡C交于A、B兩點(diǎn),AB中點(diǎn)N到直線3x+4y+m=0(m>-3)的距離為
1
5
,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•盧灣區(qū)二模)如圖,已知點(diǎn)H(-3,0),動(dòng)點(diǎn)P在y軸上,點(diǎn)Q在x軸上,其橫坐標(biāo)不小于零,點(diǎn)M在直線PQ上,且滿足
HP
PM
=0
PM
=-
3
2
MQ

(1)當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C;
(2)過定點(diǎn)F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點(diǎn),l'與(1)中的軌跡C交于D、E兩點(diǎn),求四邊形ADBE面積S的最小值;
(3)(在下列兩題中,任選一題,寫出計(jì)算過程,并求出結(jié)果,若同時(shí)選做兩題,
則只批閱第②小題,第①題的解答,不管正確與否,一律視為無效,不予批閱):
①將(1)中的曲線C推廣為橢圓:
x2
2
+y2=1
,并
將(2)中的定點(diǎn)取為焦點(diǎn)F(1,0),求與(2)相類似的問題的解;
②(解答本題,最多得9分)將(1)中的曲線C推廣為橢圓:
x2
a2
+
y2
b2
=1
,并
將(2)中的定點(diǎn)取為原點(diǎn),求與(2)相類似的問題的解.

查看答案和解析>>

同步練習(xí)冊答案