精英家教網 > 高中數學 > 題目詳情

【題目】根據國家環(huán)保部新修訂的《 環(huán)境空氣質量標準》規(guī)定:居民區(qū)的年平均濃度不得超過微克/立方米,小時平均濃度不得超過微克/立方米.我市環(huán)保局隨機抽取了一居民區(qū)小時平均濃度(單位:微克/立方米)的監(jiān)測數據,數據統(tǒng)計如下表:

組別

濃度(微克/立方米)

頻數(天)

頻率

第一組

第二組

第三組

第四組

1)這天的測量結果按上表中分組方法繪制成的樣本頻率分布直方圖如圖.

①求圖中的值;

②求樣本平均數,并根據樣本估計總體的思想,從的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質量是否需要改善?并說明理由;

2)將頻率視為概率,對于年的某天,記這天中該居民區(qū)小時平均濃度符合環(huán)境空氣質量標準的天數為,求的分布列和數學期望.

【答案】1)①;②需要改進,理由見解析;(2)分布列見解析,.

【解析】

1)①根據頻率分布直方圖中所有矩形的面積之和為可求得的值;

②根據頻率直方圖計算出年該居民區(qū)年平均濃度,與作大小比較,由此可得出結論;

2)由題意可知,進而可得出隨機變量的分布列,由此可計算得出隨機變量的數學期望值.

1)①在頻率分布直方圖中,所有矩形面積之和為

,解得;

年該居民區(qū)年平均濃度為(微克/立方米),

因為,所以年該居民區(qū)年平均濃度不符合環(huán)境空氣質量標準,故該居民區(qū)的環(huán)境需要改進;

(2)由題意,小時平均濃度符合環(huán)境空氣質量標準的概率為,

的可能取值為、、、,且,

,,.

所以,隨機變量的分布列如下表所示:

所以,隨機變量的數學期望為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】CPI是居民消費價格指數的簡稱,是一個反映居民家庭一般所購買的消費品和服務項目價格水平變動情況的宏觀經濟指標.同比一般情況下是今年第n月與去年第n月比;環(huán)比,表示連續(xù)2個統(tǒng)計周期(比如連續(xù)兩月)內的量的變化比.如圖是根據國家統(tǒng)計局發(fā)布的20194—20204月我國CPI漲跌幅數據繪制的折線圖,根據該折線圖,則下列說法正確的是(

A.20201CPI同比漲幅最大

B.20194月與同年12月相比較,4CPI環(huán)比更大

C.20197月至12月,CPI一直增長

D.20201月至4CPI只跌不漲

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】美團外賣和百度外賣兩家公司其“騎手”的日工資方案如下:美團外賣規(guī)定底薪70元,每單抽成1元;百度外賣規(guī)定底薪100元,每日前45單無抽成,超出45單的部分每單抽成6元,假設同一公司的“騎手”一日送餐單數相同,現從兩家公司個隨機抽取一名“騎手”并記錄其100天的送餐單數,得到如下條形圖:

(Ⅰ)求百度外賣公司的“騎手”一日工資(單位:元)與送餐單數的函數關系;

(Ⅱ)若將頻率視為概率,回答下列問題:

①記百度外賣的“騎手”日工資為(單位:元),求的分布列和數學期望;

②小明擬到這兩家公司中的一家應聘“騎手”的工作,如果僅從日收入的角度考慮,請你利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在矩形中,將沿翻折至,設直線與直線所成角為α,直線與平面所成角為β,二面角的平面角為γ,當γ為銳角時(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知離心率為的橢圓的左頂點為,左焦點為,及點,且、成等比數列.

1)求橢圓的方程;

2)斜率不為的動直線過點且與橢圓相交于、兩點,記,線段上的點滿足,試求為坐標原點)面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】小趙和小王約定在早上之間到某公交站搭乘公交車去上學,已知在這段時間內,共有班公交車到達該站,到站的時間分別為,如果他們約定見車就搭乘,則小趙和小王恰好能搭乘同一班公交車去上學的概率為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在新型冠狀病毒疫情期間,商業(yè)活動受到很大影響某小型零售連鎖店總部統(tǒng)計了本地區(qū)50家加盟店2月份的零售情況,統(tǒng)計數據如圖所示.據估計,平均銷售收入比去年同期下降40%,則去年2月份這50家加盟店的平均銷售收入約為(

A.6.6萬元B.3.96萬元C.9.9萬元D.7.92萬元

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】假設你有一筆資金,現有三種投資方案,這三種方案的回報如下:

方案一:每天回報40元;

方案二:第一天回報10元,以后每天比前一天多回報10元;

方案三:第一天回報0.4元,以后每天的回報比前一天翻一番.

現打算投資10天,三種投資方案的總收益分別為,,則( )

A.B.

C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)若,曲線在點處的切線與直線平行,求的值;

2)若,且函數的值域為,求的最小值.

查看答案和解析>>

同步練習冊答案