平面直角坐標(biāo)系中直線y=2x+1關(guān)于點(1,1)對稱的直線方程是(  )

(A)y=2x-1 (B)y=-2x+1

(C)y=-2x+3 (D)y=2x-3

 

D

【解析】在直線y=2x+1上任取兩個點A(0,1),B(1,3),則點A關(guān)于點(1,1)對稱的點為M(2,1),B關(guān)于點(1,1)對稱的點為N(1,-1).由兩點式求出對稱直線MN的方程為=,y=2x-3,故選D.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十二第八章第三節(jié)練習(xí)卷(解析版) 題型:填空題

設(shè)圓C同時滿足三個條件:①過原點;②圓心在直線y=x

;③截y軸所得的弦長為4,則圓C的方程是    .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十三第八章第四節(jié)練習(xí)卷(解析版) 題型:選擇題

C1:x2+y2+2x-3=0和圓C2:x2+y2-4y+3=0的位置關(guān)系為(  )

(A)相離  (B)相交  (C)外切  (D)內(nèi)含

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十一第八章第二節(jié)練習(xí)卷(解析版) 題型:填空題

已知0<k<4,直線l1:kx-2y-2k+8=0和直線l2:2x+k2y-4k2-4=0與兩坐標(biāo)軸圍成一個四邊形,則使得這個四邊形面積最小的k值為    .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十一第八章第二節(jié)練習(xí)卷(解析版) 題型:選擇題

設(shè)△ABC的一個頂點是A(3,-1),B,C的平分線方程分別為x=0,y=x,則直線BC的方程為(  )

(A)y=2x+5 (B)y=2x+3

(C)y=3x+5 (D)y=-x+

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十第三章第四節(jié)練習(xí)卷(解析版) 題型:解答題

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分圖象如圖所示.

(1)f(x)的最小正周期及解析式.

(2)設(shè)g(x)=f(x)-cos2x,求函數(shù)g(x)在區(qū)間[0,]上的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十第三章第四節(jié)練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)為奇函數(shù),該函數(shù)的部分圖象如圖所示,EFG是邊長為2的等邊三角形,f(1)的值為(  )

(A)- (B)- (C) (D)-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十六第四章第二節(jié)練習(xí)卷(解析版) 題型:解答題

已知四點A(x,0),B(2x,1),C(2,x),D(6,2x).

(1)求實數(shù)x,使兩向量,共線.

(2)當(dāng)兩向量共線時,A,B,C,D四點是否在同一條直線上?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十五第四章第一節(jié)練習(xí)卷(解析版) 題型:選擇題

在△ABC,=2,=m+n,的值為(  )

(A)2(B)(C)3(D)

 

查看答案和解析>>

同步練習(xí)冊答案