函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分圖象如圖所示.

(1)f(x)的最小正周期及解析式.

(2)設(shè)g(x)=f(x)-cos2x,求函數(shù)g(x)在區(qū)間[0,]上的最大值和最小值.

 

(1) f(x)=sin(2x+)

(2) 當(dāng)2x-=,x=,g(x)取最大值為1;

當(dāng)2x-=-,x=0,g(x)取最小值為-.

【解析】【思路點撥】(1)由圖象及題設(shè)中的限制條件可求A,ω,φ.

(2)f(x)代入g(x)整理化簡為一個三角函數(shù),再由x的范圍求最值即可.

【解析】
(1)由圖可得A=1,=-=,所以T=π,所以ω=2.

當(dāng)x=,f(x)=1,

可得sin(2×+φ)=1,

因為|φ|<,所以φ=.

所以f(x)的解析式為f(x)=sin(2x+).

(2)g(x)=f(x)-cos2x

=sin(2x+)-cos2x

=sin2xcos+cos2xsin-cos2x

=sin2x-cos2x

=sin(2x-).

因為0x,所以-2x-.

當(dāng)2x-=,x=,g(x)取最大值為1;

當(dāng)2x-=-,x=0,g(x)取最小值為-.

【方法技巧】由圖象求解析式和性質(zhì)的方法和技巧

(1)給出圖象求y=Asin(ωx+φ)+b的解析式的難點在于ω,φ的確定,本質(zhì)為待定系數(shù),基本方法是①尋找特殊點(平衡點、最值點)代入解析式;②圖象變換法,即考察已知圖象可由哪個函數(shù)的圖象經(jīng)過變換得到,通?捎善胶恻c或最值點確定周期T,進(jìn)而確定ω.

(2)由圖象求性質(zhì)的時候,首先確定解析式,再根據(jù)解析式求其性質(zhì),要緊扣基本三角函數(shù)的性質(zhì).例如,單調(diào)性、奇偶性、周期性和對稱性等都是考查的重點和熱點.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十二第八章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

當(dāng)a為任意實數(shù)時,直線(a-1)x-y+a+1=0恒過定點C,則以C為圓心,為半徑的圓的方程為(  )

(A)x2+y2-2x+4y=0 (B)x2+y2+2x+4y=0

(C)x2+y2+2x-4y=0 (D)x2+y2-2x-4y=0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十七第八章第八節(jié)練習(xí)卷(解析版) 題型:填空題

坐標(biāo)平面上有兩個定點A,B和動點P,如果直線PA,PB的斜率之積為定值m,則點P的軌跡可能是:①橢圓;②雙曲線;③拋物線;④圓;⑤直線.試將正確的序號填在橫線上:         .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十一第八章第二節(jié)練習(xí)卷(解析版) 題型:選擇題

若點A(3,5)關(guān)于直線l:y=kx的對稱點在x軸上,k(  )

(A) (B)±

(C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十一第八章第二節(jié)練習(xí)卷(解析版) 題型:選擇題

平面直角坐標(biāo)系中直線y=2x+1關(guān)于點(1,1)對稱的直線方程是(  )

(A)y=2x-1 (B)y=-2x+1

(C)y=-2x+3 (D)y=2x-3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十第三章第四節(jié)練習(xí)卷(解析版) 題型:選擇題

如圖,為了研究鐘表與三角函數(shù)的關(guān)系,建立了如圖所示的坐標(biāo)系,設(shè)秒針針尖位置P(x,y).若初始位置為P0(,),當(dāng)秒針從P0(:此時t=0)正常開始走時,P的縱坐標(biāo)y與時間t的函數(shù)關(guān)系為(  )

(A)y=sin(t+) (B)y=sin(-t-)

(C)y=sin(-t+) (D)y=sin(-t-)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十四第三章第八節(jié)練習(xí)卷(解析版) 題型:解答題

在海岸A,發(fā)現(xiàn)北偏東45°方向、距離A(-1)海里的B處有一艘走私船;A處北偏西75°方向、距離A2海里的C處的緝私船奉命以10海里/小時的速度追截走私船.同時,走私船正以10海里/小時的速度從B處向北偏東30°方向逃竄,問緝私船沿什么方向能最快追上走私船?最少要花多少時間?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十六第四章第二節(jié)練習(xí)卷(解析版) 題型:填空題

已知向量a=(-2,3),ba,向量b的起點為A(1,2),終點B在坐標(biāo)軸上,則點B的坐標(biāo)為    .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十五第四章第一節(jié)練習(xí)卷(解析版) 題型:選擇題

在以下各命題中,假命題的個數(shù)為(  )

①“|a|=|b|”是“a=b”的必要不充分條件

②任一非零向量的方向都是唯一的

③“ab”是“a=b”的充分不必要條件

④若|a|-|b|=|a|+|b|,b=0

(A)1(B)2(C)3(D)4

 

查看答案和解析>>

同步練習(xí)冊答案