【題目】在直角坐標系中,設(shè)橢圓的左焦點為,短軸的兩個端點分別為,且,點在上.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓和圓分別相切于,兩點,當面積取得最大值時,求直線的方程.
【答案】(Ⅰ) .(Ⅱ) .
【解析】
(Ⅰ) 由,可得;由橢圓經(jīng)過點,得,求出后可得橢圓的方程.
(Ⅱ)將直線方程與橢圓方程聯(lián)立消元后根據(jù)判別式為零可得,解方程可得切點坐標為,再根據(jù)直線和圓相切得到,然后根據(jù)在直角三角形中求出,進而得到,將代入后消去再用基本不等式可得當三角形面積最大時,于是可得,于是直線方程可求.
(Ⅰ)由,可得,①
由橢圓經(jīng)過點,得,②
由①②得,
所以橢圓的方程為.
(Ⅱ)由消去整理得(*),
由直線與橢圓相切得,
,
整理得,
故方程(*)化為,即,
解得,
設(shè),則,故,
因此.
又直線與圓相切,可得.
所以,
所以,
將式代入上式可得
,
由得,
所以,當且僅當時等號成立,即時取得最大值.
由,得,
所以直線的方程為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點為,設(shè)直線與軸的交點為,過點且斜率為的直線與橢圓交于兩點,為線段的中點.
(1)若直線的傾斜角為,求的值;
(2)設(shè)直線交直線于點,證明:直線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)若函數(shù)在上是增函數(shù),求正數(shù)的取值范圍;
(2)當時,設(shè)函數(shù)的圖象與x軸的交點為,,曲線在,兩點處的切線斜率分別為,,求證:+ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點,軸的非負半軸為極軸建立極坐標系.
(1)求直線和曲線的極坐標方程;
(2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高中年級開設(shè)了豐富多彩的校本課程,甲、乙兩班各隨機抽取了5名學生的學分,用莖葉圖表示.,分別表示甲、乙兩班各自5名學生學分的標準差,則_______.(填“”“<”或“=”)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“克拉茨猜想”又稱“猜想”,是德國數(shù)學家洛薩克拉茨在1950年世界數(shù)學家大會上公布的一個猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘3加1,不斷重復(fù)這樣的運算,經(jīng)過有限步后,最終都能夠得到1.己知正整數(shù)經(jīng)過6次運算后得到1,則的值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線的參數(shù)方程為 (為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線與恰有一個公共點.
(Ⅰ)求曲線的極坐標方程;
(Ⅱ)已知曲線上兩點,滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從分別寫有數(shù)字1,2,3,4,5的5張卡片中隨機抽取1張,放回后再隨機抽取1張,則抽得的第一張卡片上的數(shù)字不大于第二張卡片的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,焦距為.
(1)求橢圓的標準方程;
(2)若一直線與橢圓相交于、兩點(、不是橢圓的頂點),以為直徑的圓過橢圓的上頂點,求證:直線過定點,并求出該定點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com