【題目】已知圓、圓均滿足圓心在直線: 上,過點,且與直線l2:x=-1相切.
(1)當(dāng)時,求圓,圓的標(biāo)準(zhǔn)方程;
(2)直線l2與圓、圓分別相切于A,B兩點,求的最小值.
【答案】(1),;(2)
【解析】
(1)設(shè)出圓的標(biāo)準(zhǔn)方程,圓心為(an,bn),半徑為rm,根據(jù)已知條件列方程,解方程即可;
(2)根據(jù)圓過(1,0),與x=-1相切,且圓心在直線x-my-2=0上,得方程b2-4mb-8=0,結(jié)合圖象,用含m的式子表示出,進而求出的最小值。
設(shè)圓.
依題意得:
消去得
消去得.
(1)當(dāng)時,,解得或.
當(dāng)時,
當(dāng)時,
所以圓,圓的標(biāo)準(zhǔn)方程分別為:,.
(2)根據(jù)題意,如圖:
設(shè)圓的方程為(x-a)2+(y-b)2=r2,
已知過(1,0),得方程(1-a)2+b2=r2 ①
已知圓心在直線 上 ,得方程a-mb-2=0,得a=mb+2 ②,
已知直線l :x=-1與圓切與A,B,得r=a+1 ③
綜合①②③得b2-4mb-8=0,
,
.
故當(dāng)且僅當(dāng)時,取得最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以點為圓心的圓經(jīng)過點和,線段的垂直平分線交圓于點和,且.
(1)求直線的方程;
(2)求圓的方程;
(3)設(shè)點在圓上,試問使△的面積等于8的點共有幾個?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知 cosB+ cosA= (I)求∠C的大小;
(II)求sinB﹣ sinA的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)x,y滿足 ,若目標(biāo)函數(shù)z=﹣mx+y的最大值為﹣2m+10,最小值為﹣2m﹣2,則實數(shù)m的取值范圍是( )
A.[﹣1,2]
B.[﹣2,1]
C.[2,3]
D.[﹣1,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為的正方體中,分別是的中點,過三點的平面與正方體的下底面相交于直線;
(1)畫出直線;
(2)設(shè)求的長;
(3)求D到的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形, 是的中點, 是的中點, 是中點.
(1)證明: 平面;
(2)若平面底面, ,試在上找一點,使平面,并證明此結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+x+ .
(Ⅰ)若a=﹣2,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若關(guān)于x的不等式f(x)≥a+1在(0,+∞)上恒成立,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人的本年度的保費與其上年度的出險次數(shù)的關(guān)聯(lián)如下:
上年度出險次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
保費 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
設(shè)該險種一續(xù)保人一年內(nèi)出險次數(shù)與相應(yīng)概率如下:
一年內(nèi)出險次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0. 05 |
(1)求一續(xù)保人本年度的保費高于基本保費的概率;
(2)若一續(xù)保人本年度的保費高于基本保費,求其保費比基本保費高出60%的概率;
(3)求續(xù)保人本年度的平均保費與基本保費的比值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com