【題目】編號分別為的16名籃球運動員在某次訓(xùn)練比賽中的得分記錄如下:
運動員編號 | ||||||||
得分 | 15 | 35 | 21 | 28 | 25 | 36 | 18 | 34 |
運動員編號 | ||||||||
得分 | 17 | 26 | 25 | 33 | 22 | 12 | 31 | 38 |
(1)將得分在對應(yīng)區(qū)間內(nèi)的人數(shù)填入相應(yīng)的空格:
區(qū)間 | [10,20) | [20,30) | [30,40] |
人數(shù) |
(2)從得分在區(qū)間[20,30)內(nèi)的運動員中隨機抽取2人.
(ⅰ)用運動員編號列出所有可能的抽取結(jié)果;
(ⅱ)求這2人得分之和大于50的概率.
【答案】(1)答案見解析;(2)(i)答案見解析;(ii) .
【解析】第一問中,利用表格中的數(shù)據(jù)得到了人數(shù)
第二問中,得分在區(qū)間【20,30)內(nèi)的運動員編號為從中隨機
抽取2人,所有可能的抽取結(jié)果有15種,
“從得分在區(qū)間【20,30)內(nèi)的運動員中隨機抽取2人,這2人得分之和大于50”(記為事件B)的所有可能結(jié)果有: ,共5種。
(Ⅰ)解:4,6,6 …………2分
(Ⅱ)(i)解:得分在區(qū)間【20,30)內(nèi)的運動員編號為從中隨機
抽取2人,所有可能的抽取結(jié)果有:
,
共15種。
…………7分
(ii)解:“從得分在區(qū)間【20,30)內(nèi)的運動員中隨機抽取2人,這2人得分之和大于50”(記為事件B)的所有可能結(jié)果有: ,共5種。
所以……………12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列的公比,前n項和為.若,且是與的等差中項.
(1)求;
(2)數(shù)列滿足,,求數(shù)列的前2019項和;
(3)設(shè),問數(shù)列中是否存在三項,它們可以構(gòu)成等差數(shù)列?若存在,請求出一組適合條件的項;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線 的左、右焦點分別為,過作傾斜角為的直線與軸和雙曲線的右支分別交于兩點,若點平分線段,則該雙曲線的離心率是( )
A. B. C. 2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)與函數(shù)的圖像關(guān)于直線對稱,函數(shù) .
(Ⅰ)若,且關(guān)于的方程有且僅有一個解,求實數(shù)的值;
(Ⅱ)當時,若關(guān)于的不等式在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點分別為,,焦距為6.
(1)求橢圓的方程.
(2)過橢圓左頂點的兩條斜率之積為的直線分別與橢圓交于點.試問直線是否過某定點?若過,求出該點的坐標;若不過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在曲線上,⊙過原點,且與軸的另一個交點為,若線段,⊙和曲線上分別存在點、點和點,使得四邊形(點, , , 順時針排列)是正方形,則稱點為曲線的“完美點”.那么下列結(jié)論中正確的是( ).
A. 曲線上不存在”完美點”
B. 曲線上只存在一個“完美點”,其橫坐標大于
C. 曲線上只存在一個“完美點”,其橫坐標大于且小于
D. 曲線上存在兩個“完美點”,其橫坐標均大于
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計,目前微信用戶已達10億,2016年,諸多傳統(tǒng)企業(yè)大佬紛紛嘗試進入微商渠道,讓這個行業(yè)不斷地走向正規(guī)化、規(guī)范化.2017年3月25日,第五屆中國微商博覽會在山東濟南舜耕國際會展中心召開,力爭為中國微商產(chǎn)業(yè)轉(zhuǎn)型升級,某品牌飲料公司對微商銷售情況進行中期調(diào)研,從某地區(qū)隨機抽取6家微商一周的銷售金額(單位:百元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).
(1)若銷售金額(單位:萬元)不低于平均值的微商定義為優(yōu)秀微商,其余為非優(yōu)秀微商,根據(jù)莖葉圖推斷該地區(qū)110家微商中有幾家優(yōu)秀?
(2)從隨機抽取的6家微商中再任取2家舉行消費者回訪調(diào)查活動,求恰有1家是優(yōu)秀微商的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2018·贛中聯(lián)考]李冶(1192-1279),真實欒城(今屬河北石家莊市)人,金元時期的數(shù)學(xué)家、詩人,晚年在封龍山隱居講學(xué),數(shù)學(xué)著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑、正方形的邊長等.其中一問:現(xiàn)有正方形方田一塊,內(nèi)部有一個圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注:240平方步為1畝,圓周率按3近似計算)( )
A. 10步,50步 B. 20步,60步 C. 30步,70步 D. 40步,80步
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中為常數(shù))
(1)求的單調(diào)增區(qū)間;
(2)若時,的最大值為,求的值;
(3)求取最大值時的取值集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com