【題目】某中學(xué)根據(jù)學(xué)生的興趣愛好,分別創(chuàng)建了“書法”、“詩詞”、“理學(xué)”三個(gè)社團(tuán),據(jù)資料統(tǒng)計(jì)新生通過考核選拔進(jìn)入這三個(gè)社團(tuán)成功與否相互獨(dú)立.2015年某新生入學(xué),假設(shè)他通過考核選拔進(jìn)入該校的“書法”、“詩詞”、“理學(xué)”三個(gè)社團(tuán)的概率依次為、、,己知三個(gè)社團(tuán)他都能進(jìn)入的概率為,至少進(jìn)入一個(gè)社團(tuán)的概率為,且.
(1)求與的值;
(2)該校根據(jù)三個(gè)社團(tuán)活動(dòng)安排情況,對(duì)進(jìn)入“書法”社的同學(xué)增加校本選修學(xué)分1分,對(duì)進(jìn)入“詩詞”社的同學(xué)增加校本選修學(xué)分2分,對(duì)進(jìn)入“理學(xué)”社的同學(xué)增加校本選修學(xué)分3分.求該新同學(xué)在社團(tuán)方面獲得校本選修課學(xué)分分?jǐn)?shù)不低于4分的概率.
【答案】(1) ; (2).
【解析】
(1)根據(jù)題意,假設(shè)該同學(xué)通過考核選拔進(jìn)入該校的“書法”、“詩詞”、“理學(xué)”三個(gè)社團(tuán)的概率依次為、、,已知三個(gè)社團(tuán)都能進(jìn)入的概率為,至少進(jìn)入一個(gè)社團(tuán)的概率為,且,利用相關(guān)公式建立方程組,即可求得與的值;
(2)根據(jù)題意,可知不低于4分包括了得分為4分、5分、6分三種情況,之后應(yīng)用乘法和加法公式求得結(jié)果.
(1)依題,解得
(2)由題令該新同學(xué)在社團(tuán)方面獲得本選修課學(xué)分的分?jǐn)?shù)為,
獲得本選修課學(xué)分分?jǐn)?shù)不低于4分為事件,
則;;.
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的非負(fù)半軸重合,且長度單位相同,直線的極坐標(biāo)方程為,曲線(為參數(shù)).其中.
(1)試寫出直線的直角坐標(biāo)方程及曲線的普通方程;
(2)若點(diǎn)為曲線上的動(dòng)點(diǎn),求點(diǎn)到直線距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若,解不等式;
(Ⅱ)若不等式至少有一個(gè)負(fù)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C:,O為坐標(biāo)原點(diǎn),F為C的右焦點(diǎn),過F的直線與C的兩條漸近線的交點(diǎn)分別為M、N.若OMN為直角三角形,則|MN|=
A. B. 3 C. D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面上的三點(diǎn) 、 、 .
(1)求以 、 為焦點(diǎn)且過點(diǎn) 的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn) 、 、 關(guān)于直線 的對(duì)稱點(diǎn)分別為 、 、 ,求以 、 為焦點(diǎn)且過點(diǎn) 的雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線C:y2=8x的焦點(diǎn)且斜率為k的直線與C交于A、B兩點(diǎn),若以AB為直徑的圓過點(diǎn)M(﹣2,2),則k=( 。
A.B.C.D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年9月24日,阿貝爾獎(jiǎng)和菲爾茲獎(jiǎng)雙料得主、英國著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)界的震動(dòng).在1859年,德國數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素?cái)?shù)個(gè)數(shù)》的論文并提出了一個(gè)命題,也就是著名的黎曼猜想.在此之前,著名數(shù)學(xué)家歐拉也曾研究過這個(gè)問題,并得到小于數(shù)字的素?cái)?shù)個(gè)數(shù)大約可以表示為的結(jié)論.若根據(jù)歐拉得出的結(jié)論,估計(jì)10000以內(nèi)的素?cái)?shù)的個(gè)數(shù)為(素?cái)?shù)即質(zhì)數(shù),,計(jì)算結(jié)果取整數(shù))
A. 1089 B. 1086 C. 434 D. 145
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)不等式組表示的區(qū)域?yàn)?/span>A,不等式組表示的區(qū)域?yàn)?/span>B.
(1)在區(qū)域A中任取一點(diǎn)(x,y),求點(diǎn)(x,y)∈B的概率;
(2)若x、y分別表示甲、乙兩人各擲一次骰子所得的點(diǎn)數(shù),求點(diǎn)(x,y)在區(qū)域B中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱錐中,底面是邊長為的正方形,是正三角形,,分別是的中點(diǎn)。
(1)求證:;
(2)求平面與平面所成銳二面角的大小;
(3)線段上是否存在一個(gè)動(dòng)點(diǎn),使得直線與平面所成角為,若存在,求線段的長度,若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com