【題目】已知橢圓的左、右焦點分別為,,若橢圓經(jīng)過點,且△PF1F2的面積為2

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)斜率為1的直線與以原點為圓心,半徑為的圓交于AB兩點,與橢圓C交于CD兩點,且),當(dāng)取得最小值時,求直線的方程.

【答案】(1) ;(2).

【解析】

1)根據(jù)的面積求得的值,再利用橢圓過點,求得的值,從而求得橢圓的方程;

2)設(shè)直線的方程為,由直線和圓、橢圓都相交,求得,再利用弦長公式分別計算,,從而建立的函數(shù)關(guān)系式,當(dāng)取得最小值時,可求得的值,從而得到直線的方程.

解:(1)由的面積可得,即,∴.①

又橢圓過點,∴.②

由①②解得,,故橢圓的標(biāo)準(zhǔn)方程為.

2)設(shè)直線的方程為,則原點到直線的距離

由弦長公式可得

代入橢圓方程,得,

由判別式,解得

由直線和圓相交的條件可得,即,也即

設(shè),,則,,

由弦長公式,得

,得

,∴,則當(dāng)時,取得最小值,

此時直線的方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程。

已知曲線Ct為參數(shù)), C為參數(shù))。

1)化C,C的方程為普通方程,并說明它們分別表示什么曲線;

2)若C上的點P對應(yīng)的參數(shù)為QC上的動點,求中點到直線

t為參數(shù))距離的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四棱柱的底面邊長為1,高為2,為線段的中點,求:

1)三棱錐的體積;

2)異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)棱底面,底面是直角梯形,,且,,是棱的中點 .

(Ⅰ)求證:∥平面;

(Ⅱ)求平面與平面所成銳二面角的余弦值;

(Ⅲ)設(shè)點是線段上的動點,與平面所成的角為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自由購是通過自助結(jié)算方式購物的一種形式.某大型超市為調(diào)查顧客使用自由購的情況,隨機抽取了100人,統(tǒng)計結(jié)果整理如下

20以下

[20,30)

[30,40)

[40,50)

[50,60)

[60,70]

70以上

使用人數(shù)

3

12

17

6

4

2

0

未使用人數(shù)

0

0

3

14

36

3

0

(Ⅰ)現(xiàn)隨機抽取1名顧客,試估計該顧客年齡在且未使用自由購的概率;

(Ⅱ)從被抽取的年齡在使用自由購的顧客中隨機抽取3人進(jìn)一步了解情況,表示這3人中年齡在的人數(shù),求隨機變量的分布列及數(shù)學(xué)期望;

(Ⅲ)為鼓勵顧客使用自由購,該超市擬對使用自由購的顧客贈送1個環(huán)保購物袋.若某日該超市預(yù)計有5000人購物,試估計該超市當(dāng)天至少應(yīng)準(zhǔn)備多少個環(huán)保購物袋.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

討論的單調(diào)性.

,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖為某地區(qū)2006~2018年地方財政預(yù)算內(nèi)收入、城鄉(xiāng)居民儲蓄年末余額折線圖.根據(jù)該折線圖可知,該地區(qū)2006~2018年( )

A.財政預(yù)算內(nèi)收入、城鄉(xiāng)居民儲蓄年末余額均呈增長趨勢

B.財政預(yù)算內(nèi)收入、城鄉(xiāng)居民儲蓄年末余額的逐年增長速度相同

C.財政預(yù)算內(nèi)收入年平均增長量高于城鄉(xiāng)居民儲蓄年末余額年平均增長量

D.城鄉(xiāng)居民儲蓄年末余額與財政預(yù)算內(nèi)收入的差額逐年增大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若的值域為,求的值;

(Ⅱ)巳,是否存在這祥的實數(shù),使函數(shù)在區(qū)間內(nèi)有且只有一個零點.若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實數(shù),,對于定義在上的函數(shù),有下述命題:

①“是奇函數(shù)”的充要條件是“函數(shù)的圖像關(guān)于點對稱”;

②“是偶函數(shù)”的充要條件是“函數(shù)的圖像關(guān)于直線對稱”;

③“的一個周期”的充要條件是“對任意的,都有”;

④“函數(shù)的圖像關(guān)于軸對稱”的充要條件是“

其中正確命題的序號是( )

A.①②B.②③C.①④D.③④

查看答案和解析>>

同步練習(xí)冊答案