請(qǐng)給出使得不等式x>0成立的一個(gè)必要不充分條件:
 
考點(diǎn):必要條件
專(zhuān)題:簡(jiǎn)易邏輯
分析:根據(jù)必要不充分條件的概念即可給出使得不等式x>0成立的一個(gè)必要不充分條件.
解答:解:若x>-2,得不到x>0;
而x>0,能得到x>-2;
∴x>-2是x>0的一個(gè)必要不充分條件.
故答案為:x>-2.
點(diǎn)評(píng):考查必要條件、充分條件,以及必要不充分條件的概念.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=tan(x-
π
3
)的定義域是( 。
A、{x∈R|x≠kπ+
6
,k∈Z}
B、{x∈R|x≠kπ-
6
,k∈Z}
C、{x∈R|x≠2kπ+
6
,k∈Z}
D、{x∈R|x≠2kπ-
6
,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若S4≤4,S5≥15,則a4的最小值為(  )
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=tan(
π
2
x+
π
6
)的定義域、周期和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的兩個(gè)同心圓盤(pán)均被n等分(n∈N*,n≥2),在相重疊的扇形格中依次同時(shí)填上1,2,3,…,n,內(nèi)圓盤(pán)可繞圓心旋轉(zhuǎn),每次可旋轉(zhuǎn)一個(gè)扇形格,格中數(shù)之積的和為此位置的“旋轉(zhuǎn)和”.
(Ⅰ)求2個(gè)不同位置的“旋轉(zhuǎn)和”的和;當(dāng)內(nèi)圓盤(pán)旋轉(zhuǎn)到某一位置時(shí),定義所有重疊扇形;
(Ⅱ)當(dāng)n為偶數(shù)時(shí),求n個(gè)不同位置的“旋轉(zhuǎn)和”的最小值;
(Ⅲ)設(shè)n=4m(m∈N*),在如圖所示的初始位置將任意而對(duì)重疊的扇形格中的兩數(shù)均改寫(xiě)為0,證明:當(dāng)m≤4時(shí),通過(guò)旋轉(zhuǎn),總存在一個(gè)位置,任意重疊的扇形格中兩數(shù)不同時(shí)為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某產(chǎn)品連續(xù)4個(gè)月的廣告費(fèi)用xi(千元)與銷(xiāo)售額yi(萬(wàn)元),經(jīng)過(guò)對(duì)這些數(shù)據(jù)的處理,得到如下數(shù)據(jù)信息:
4
i=1
xi=18,
4
i=1
yi=14;
②廣告費(fèi)用x和銷(xiāo)售額y之間具有較強(qiáng)的線性相關(guān)關(guān)系;
③回歸直線方程
y
=
b
x+
a
中的
b
=0.8(用最小二乘法求得).
那么,當(dāng)廣告費(fèi)用為6千元時(shí),可預(yù)測(cè)銷(xiāo)售額約為( 。
A、3.5萬(wàn)元
B、4.7萬(wàn)元
C、4.9萬(wàn)元
D、6.5萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=(
1
2
x,x∈[0,1]的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=3
4-x
+4
x-3
的反函數(shù)f-1(x)的值域?yàn)椋ā 。?/div>
A、(-∞,4]B、[3,4]
C、[3,+∞)D、R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線y=
3
x+1的傾斜角是( 。
A、30°B、60°
C、120°D、150°

查看答案和解析>>

同步練習(xí)冊(cè)答案